A tamed higher-arity extension of ALC

Forward Guarded Fragment

June 22, 2021, QuantLA Research Seminar

Bartosz “Bart” Bednarczyk

TU DRESDEN & UNIVERSITY OF WROCLAW

TECHNISCHE |
UNIVERSITAT gﬁ@ Uniwersytet
DRESDEN ~

%) Wroctawski

= SENCE W
D e c I G U I European Research Council
Established by the European Commission

Our motivation: what features make CQ answering hard for ALC?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent /

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).hast

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).hast

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]
As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]

2. Some of them increase the complexity exponentially:

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]
As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

more: inverses [Lutz'07], self-loops [B., Rudolph’21 Submitted.]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

more: inverses [Lutz'07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCZ and the others hard?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
) udolph'20]
ation [B.21, in prep.]

hasMother C hasPa

Also with arithmetic a
As well as with regular

2. Some of them incr
/% [Ngo et al’'16]

A AN

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
) udolph'20]
ation [B.21, in prep.]

hasMother C hasPa
Also with arithmetic a
As well as with regular

2. Some of them incr
/éé é [Ngo et al’'16]

4 A AN

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Can we find a higher-arity version of ALC with ExpTime querying?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
udolph'20]
ation [B.21, in prep.]

hasMother C hasPa
Also with arithmetic a
As well as with regular

2. Some of them incr
[Ngo et al’'16]

A A

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Can we find a higher-arity version of ALC with ExpTime querying?
Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

Ax artst(x) AVy (adm(x,y) — bkpr(y))

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires

Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))
Theorem (Gradel 1999)
The satisfiability problem for GF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))
Theorem (Gradel 1999)
The satisfiability problem for GF is 2EXPTIME-complete.

Theorem (Barany et al. 2013)

Conjunctive query entailment problem for GF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student

Vx1(lect(xy) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x2, x3))))

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)

Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.

If we replace suffices by infixes in FL we get the forward fragment FF.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.
If we replace suffices by infixes in FL we get the forward fragment FF.
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In GF:
Vx grf-wth-gdtrs(x) — Jy hasChld(x, y) A (3z hasChld(y, z) A female(z))

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[<] over words, LTL[XF, XP] corresponds to FO?[<]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[<] over words, LTL[XF, XP] corresponds to FO?[<]
s there any logic equivalent to LTL[F]| and LTL[XF] over words?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[<] over words, LTL[XF, XP] corresponds to FO?[<]
s there any logic equivalent to LTL[F]| and LTL[XF] over words?
Yes! FGF[<] and FGF[<] ®

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[<] over words, LTL[XF, XP] corresponds to FO?[<]
s there any logic equivalent to LTL[F]| and LTL[XF] over words?
Yes! FGF[<] and FGF[<] ®

Theorem (TFAE for a formal language £ C ¥*)
(a) L is definable in FGF[<], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union Aja1A; ... akA; with a; € X, A; C X and a; € A;_1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

e New, arguably elegant logic FGF over relational, equality-free signatures.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.

e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.

thr(R) = \V/X1\V/X2\V/X3 R(Xl, X2) YA\ R(XQ, X3) — R(Xl, X3).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 X0 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 X0 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are EXPTIME-complete.

Harvesting from the results of Gradel and Barany et al:

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are EXPTIME-complete.

Harvesting from the results of Gradel and Barany et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5/ 14

Main ingredients for SAT: Part |

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6/ 14

Main ingredients for SAT: Part |
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6/ 14

Main ingredients for SAT: Part |
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Blue Bi, Red R, Green ¢
B R '\B’ -I‘R-\ ‘B R 'B

({R. G,,EDE. é">-¥°fmxol P :;4_/&2\@3_/1%

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6/ 14

Main ingredients for SAT: Part |
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Blue Bi, Red R, Green ¢
B R '\B’ -I‘R-\ ‘B R 'B

({R. G,,EDE. é">-¥°fmxol P :;4_/&2\@3_/1%

Lemma
The number of different (X, n)-types is < 2/,

The number of conjuncts in each (X, n)-type is < |X| - n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6/ 14

Main ingredients for SAT: Part Il

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14

Main ingredients for SAT: Part Il
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14

Main ingredients for SAT: Part Il
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14

Main ingredients for SAT: Part Il
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Lemma

Every satisfiable FGF knowledge base has a HAF (counter)model.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14

Main ingredients for SAT: Part Il
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Lemma

Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI'20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14

Main ingredients for SAT: Part Il (last)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

1.
2.

3.

Main ingredients for SAT: Part Il (last)
Take a satisfiable FGF knowledge base IC and any of its models 2.
Transform 2l into a HAF model § of IC.

[o010 / 0
R

Make § root-sparse, i.e. §rqy should have < poly(KC) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

01 20

}/\ Y ; .

R kS $

. o) &
5 s . .
) o

(0000 | (0010 | 0100 2000

S

3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

000

I
¥
N
\0000 0010 0100 2000

3. Make § root-sparse, i.e. ngﬂN should have < poly) tuples in relations.
4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

6. Use APSPACE tableaux-like procedure to construct the relevant part of §.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

8/ 14

Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

01 20

}/\ Y ; .

R kS $

. o) &
5 s . .
) o

(0000 | (0010 | 0100 2000

S

3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

6. Use APSPACE tableaux-like procedure to construct the relevant part of §.

Theorem (B., JELIA 2021)
Knowledge-base SAT for FGF is EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

8/ 14

Main ingredients for Query entailment: Part | (intro)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9/ 14

Main ingredients for Query entailment: Part | (intro)

Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches)
If 2 = K but 2l |~ g we call 2 a countermodel for (K, q).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

9/ 14

Main ingredients for Query entailment: Part | (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches)
If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).

Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

9/ 14

Main ingredients for Query entailment: Part | (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches)
If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).
Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.

if U(X17X27X37X4) € g then U3(X1,X2,X3) cq

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

9/ 14

Main ingredients for Query entailment: Part | (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches)
If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).
Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.

if U(Xl,XQ,Xg,X4) € g then U3(X1,X2,X3) cq

The first important step: how to query with HAF-shaped queries?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9/ 14

Main ingredients for Query entailment: Part | (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches)
If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).
Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.

if U(X17X27X3,X4) € g then U3(X1,X2,X3) cq

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

l_l—

S
N

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9/ 14

Main ingredients for Query entailment: Part Il (rolling-up)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

4 AB Idea: Traverse top-down and construct predicates Subty(x).

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

4 AB Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A(x1) A B(x1) A EIXQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A(x1) A B(x1) A EIXQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

Subtguf(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)
Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=
A(x1) A B(x1) A EIXQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subtguﬁ(xl, xp) = R(x1, x2) A Ta(x1, %) A A(x2) A C(x2)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)
Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=
A(x1) A B(x1) A E’XQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subtguﬁ(xl, xp) = R(x1, x2) A Ta(x1, %) A A(x2) A C(x2)
/\EIX3 Subté“//"/(xl, X2, X3) N E|X3 Subtg//V(XQ, X3)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A(x1) A B(x1) A E’XQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subty" (x1, x0) == R(x1, %) A Ta(x1, %) A A(x) A C(x2)
C . o B /\EIX3 Subtgu Y (Xl, X2, X3) N\ E|X3 Subtg V(XQ, X3)

é Subt?“ V/(Xl, xp,x3) = T(x1, x0, x3) A B(x3) A R(x2, x3)

A,C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)
Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=
A(x1) A B(x1) A E’XQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subtguﬁ(xl, xp) = R(x1, x2) A Ta(x1, %) A A(x2) A C(x2)

", "
C . o B /\EIX3 Subtg” Y (Xl, X2, X3) N\ E|X3 Subtg V(XQ, X3)

& Subtg”//‘/(xl, xp,x3) = T(x1, x0, x3) A B(x3) A R(x2, x3)
¥ For any HAF-shaped CQ one can polytime compute
A ° the definition of Matchg(x,00t) With @ meaning that
Matchy # () iff 2 |= g.
A C

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Query entailment: Part Il (rolling-up)

0 A.B Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A(Xl) N B(Xl) N E’XQSUbtgu,(X]_, X2) A HXQSuthUH(Xl, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subtguﬁ(xl, xp) = R(x1, x2) A Ta(x1, %) A A(x2) A C(x2)
/\EIX3 Subtg“’/"/(xl, X2, X3) N E|X3 Suth//V(XQ, X3)

Subtg”//‘/(xl, xp,x3) = T(x1, x0, x3) A B(x3) A R(x2, x3)

For any HAF-shaped CQ one can polytime compute
the definition of Matchg(x,00t) With @ meaning that

Match? # 0 iff 2 |= q.

Aa C I bé Qhar iff K U {VXl ﬁMatchqhaf(xl)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.

Intuitively it mimics a query match by partitioning variables into three sets:

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots,

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { xo0, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

000
!
s,
0000

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { 200, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

With every splitting I of g we associate a spoiler an FGF-kb 7.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { 200, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

With every splitting I of g we associate a spoiler an FGF-kb 7.
ldea: if KC U K} then there is no matches of g splitting like 1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { xo0, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

With every splitting I of g we associate a spoiler an FGF-kb 7.
ldea: if KC U K} then there is no matches of g splitting like 1.

To construct a spoiler we must know how to “describe” 1 in FGF, in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert
(Ix2 R(x1, x2) A R(x1, x2) A Matchg,_(x2)) (2)
into the DB part of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

@ Simply insert
| E|X2 X1, X2) N R(Xl, X2) N\ Matchqh f()) (a)

into the DB part of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert
(Ix2 R(x1, x2) A R(x1, x2) A Matchg,_(x2)) (2)
into the DB part of K.

Fatal error! Not in FGF.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert

(Ix2 R(x1, x2) A R(x1, x2) A Matchg,_(x2)) (2)
into the DB part of K.

Fatal error! Not in FGF.
Repair idea: introduce a bit more constants

to FG.F but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14

Main ingredients for Querying: Part V (algorithm)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)

1. We employ a generalisation of spoilers called super-spoilers /Cg*.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)
1. We employ a generalisation of spoilers called super-spoilers IC?,*.

2. If KUK is SAT then K |~ q.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)
1. We employ a generalisation of spoilers called super-spoilers IC?,*.

2. If KUK is SAT then K - q.
3. It turns out that each super-spoiler is of poly-size in || + |q|.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)
1. We employ a generalisation of spoilers called super-spoilers IC?,*.
2. If KUK is SAT then K - q.
3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

13/ 14

Main ingredients for Querying: Part V (algorithm)
1. We employ a generalisation of spoilers called super-spoilers IC?,*.
2. If KUK is SAT then K - q.
3. It turns out that each super-spoiler is of poly-size in || + |q|.
4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

13/ 14

Main ingredients for Querying: Part V (algorithm)
1. We employ a generalisation of spoilers called super-spoilers ICg*.
2. If KUK is SAT then K - q.
3. It turns out that each super-spoiler is of poly-size in || + |q|.
4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

13/ 14

Main ingredients for Querying: Part V (algorithm)

1. We employ a generalisation of spoilers called super-spoilers ICg*.

2. If KUK is SAT then K |~ q.

3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)

1. We employ a generalisation of spoilers called super-spoilers IC?,*.

2. If KUK is SAT then K |~ q.

3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is EXPTIME-complete.

Nice application: Forward Guarded Negation fragment of FO

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)

1. We employ a generalisation of spoilers called super-spoilers ICg*.

2. If KUK is SAT then K |~ q.

3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is EXPTIME-complete.

Nice application: Forward Guarded Negation fragment of FO
For ¢ in (forward) GNFO we poly-compute ¢ € (forward)GF and a UCQ g s.t.

Y is SAT iff ¢ = q.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Main ingredients for Querying: Part V (algorithm)

1. We employ a generalisation of spoilers called super-spoilers ICg*.

2. If KUK is SAT then K |~ q.

3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is EXPTIME-complete.

Nice application: Forward Guarded Negation fragment of FO
For ¢ in (forward) GNFO we poly-compute ¢ € (forward)GF and a UCQ g s.t.

Y is SAT iff ¢ = q.
Theorem

The satisfiability of Forward Guarded Negation F O is EXPTIME-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14

Conclusions

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions

Forward GF = formulae guarded but kept forward

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere
2. Study FGF + Z/0O/Q (partial results obtained)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere
2. Study FGF + Z/0O/Q (partial results obtained)
3. FGF+u or FGF+S behave nicer than GF+ TG (with E. Kieronski)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + Z/0O/Q (partial results obtained)
3. FGF+u or FGF+S behave nicer than GF+ TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + Z/0O/Q (partial results obtained)
3. FGF+u or FGF+S behave nicer than GF+ TG (with E. Kieronski)

4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

research?
ward Fragment of FQO.
ervation Theorems a la tos-Tarski

rsity of Tampere

)
‘G (with E. Kieronski)

nt proofs (with Tim Lyon).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14

