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1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

more: inverses [Lutz'07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCZ and the others hard?
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Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Can we find a higher-arity version of ALC with ExpTime querying?
Yes! FGF [B. JELIA’21, This talk!]
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Theorem (Gradel 1999)
The satisfiability problem for GF is 2EXPTIME-complete.

Theorem (Barany et al. 2013)

Conjunctive query entailment problem for GF is 2EXPTIME-complete.
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Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.
If we replace suffices by infixes in FL we get the forward fragment FF.
Lemma (B. 2021)
FF is reducible to FL in polynomial time.
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On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In GF:
Vx grf-wth-gdtrs(x) — Jy hasChld(x, y) A (3z hasChld(y, z) A female(z))
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On intersection of GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In FF and GF (thus in FGF):
Vx; grf-wth-gdtrs(x;) — 3xp hasChld(xy, xp) A Ix3 hasChld(xy, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[<] over words, LTL[XF, XP] corresponds to FO?[<]
s there any logic equivalent to LTL[F]| and LTL[XF] over words?
Yes! FGF[<] and FGF[<] ®

Theorem (TFAE for a formal language £ C ¥*)
(a) L is definable in FGF[<], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union Aja1A; ... akA; with a; € X, A; C X and a; € A;_1.
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The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 X0 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are EXPTIME-complete.
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e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are EXPTIME-complete.

Harvesting from the results of Gradel and Barany et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.
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Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-
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which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Blue Bi, Red R, Green ¢
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Lemma
The number of different (X, n)-types is < 2/,

The number of conjuncts in each (X, n)-type is < |X| - n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6/ 14



Main ingredients for SAT: Part Il

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14



Main ingredients for SAT: Part Il
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.
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Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Lemma

Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI'20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7/ 14



Main ingredients for SAT: Part Il (last)

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.
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Main ingredients for SAT: Part Il (last)
Take a satisfiable FGF knowledge base IC and any of its models 2.
Transform 2l into a HAF model § of IC.
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Make § root-sparse, i.e. §rqy should have < poly(KC) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).
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3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

000

I
¥
N
\0000 0010 0100 2000

3. Make § root-sparse, i.e. ngﬂN should have < poly ) tuples in relations.
4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

6. Use APSPACE tableaux-like procedure to construct the relevant part of §.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment

8/ 14



Main ingredients for SAT: Part Il (last)
1. Take a satisfiable FGF knowledge base K and any of its models 2L.
2. Transform 2l into a HAF model § of K.

01 20

}/\ Y ; .

R kS $

. o) &
5 s . .
) o

(0000 | (0010 | 0100 2000

S

3. Make § root-sparse, i.e. §[r~y should have < poly(K) tuples in relations.

4. Do some pruning to establish that degree of each node is < poly(K).
5. The “relevant” part of § is of depth < poly(number of types) = exp(/C).

6. Use APSPACE tableaux-like procedure to construct the relevant part of §.

Theorem (B., JELIA 2021)
Knowledge-base SAT for FGF is EXPTIME-complete.
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Main ingredients for Query entailment: Part | (intro)
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Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches )
If 2 = K but 2l |~ g we call 2 a countermodel for (K, q).
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If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).
Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.

if U(Xl,XQ,Xg,X4) € g then U3(X1,X2,X3) cq

The first important step: how to query with HAF-shaped queries?
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Main ingredients for Query entailment: Part | (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models 2 of IC we have 2l |= g (query g matches )
If A = IC but 2 ¥~ g we call 2 a countermodel for (IC, q).
Lemma

If there is countermodel for (C, g) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.

if U(X17X27X3,X4) € g then U3(X1,X2,X3) cq

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

l_l—

S
N
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Main ingredients for Query entailment: Part Il (rolling-up)

A,C
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Matchg(x1) := Subtg(x1) :=
A(x1) A B(x1) A E’XQSUbtgu,(X]_, x2) N ElXQSUthUH(X]_, X2)
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0 A.B Idea: Traverse top-down and construct predicates Subty(x).
Matchg(x1) := Subtg(x1) :=

A(Xl) N B(Xl) N E’XQSUbtgu,(X]_, X2) A HXQSuthUH(Xl, X2)

Subtgul(xl, x2) = R(x1, x2) A S(x1, x2) A B(x)

Subtguﬁ(xl, xp) = R(x1, x2) A Ta(x1, %) A A(x2) A C(x2)
/\EIX3 Subtg“’/"/(xl, X2, X3) N E|X3 Suth//V(XQ, X3)

Subtg”//‘/(xl, xp,x3) = T(x1, x0, x3) A B(x3) A R(x2, x3)

For any HAF-shaped CQ one can polytime compute
the definition of Matchg(x,00t) With @ meaning that

Match? # 0 iff 2 |= q.

Aa C I bé Qhar iff K U {VXl ﬁMatchqhaf(xl)} is SAT.
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Main ingredients for Querying: Part Ill (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { xo0, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

000
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With every splitting I of g we associate a spoiler an FGF-kb 7.
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To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

g = (A(zo) A R(z0, 21) AR(z1, 20) A B(21)) A (S(20, 200) A R(200, Zo00))
A (R(zo, z01) A S(2o1, 2010) A R(@010, %0100)) A (A(2200) A R(2200, 22001) A B(22001)) -

Roots = { o, 71 }
SubTree; = { xo0, Zooo }
SubTrees = { 201, %010, Zo100 }
Trees = { 2200, Z2001 }
name(zp) = a,name(z;) = b

root-of (1) = zy,root-of (2) = x

With every splitting I of g we associate a spoiler an FGF-kb 7.
ldea: if KC U K} then there is no matches of g splitting like 1.

To construct a spoiler we must know how to “describe” 1 in FGF, in particular cases (a), (b) and (c).
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Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert
(Ix2 R(x1, x2) A R(x1, x2) A Matchg,_(x2)) (2)
into the DB part of K.
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Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert

(Ix2 R(x1, x2) A R(x1, x2) A Matchg,_(x2)) (2)
into the DB part of K.

Fatal error! Not in FGF.
Repair idea: introduce a bit more constants

to FG.F but not too much.
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Main ingredients for Querying: Part V (algorithm)
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Main ingredients for Querying: Part V (algorithm)
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2. If KUK is SAT then K |~ q.

3. It turns out that each super-spoiler is of poly-size in || + |q|.

4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ®. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is EXPTIME-complete.

Nice application: Forward Guarded Negation fragment of FO
For ¢ in (forward) GNFO we poly-compute ¢ € (forward)GF and a UCQ g s.t.

Y is SAT iff ¢ = q.
Theorem
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2. Study FGF + Z/0O/Q (partial results obtained)
3. FGF+u or FGF+S behave nicer than GF+ TG (with E. Kieronski)

4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).
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Thanks for attention!
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