
A tamed higher-arity extension of ALC

Forward Guarded Fragment
June 22, 2021, QuantLA Research Seminar

Bartosz “Bart” Bednarczyk

TU Dresden & University of Wrocław



Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent

Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel

Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]

As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]

2. Some of them increase the complexity exponentially:
E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]

more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?

Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 1 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.

• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))
Example 2. Every artist envies every bekeeper he admires

∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))
Theorem (Grädel 1999)

The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 2 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.

• In atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))
Example 2. No lecturer introduces any professor to every student

∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))
Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)

Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)

Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .

Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 3 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]

Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female
In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages

LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]
Is there any logic equivalent to LTL[F] and LTL[XF] over words?

Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?

Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



On intersection of GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ (∃z hasChld(y , z) ∧ female(z))

In FF and GF (thus in FGF):
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Nice remark: FO characterisation of formal languages
LTL corresponds to FO[≤] over words, LTL[XF,XP] corresponds to FO2[≤]

Is there any logic equivalent to LTL[F] and LTL[XF] over words?
Yes! FGF [≤] and FGF [<] ,

Theorem (TFAE for a formal language L ⊆ Σ∗)
(a) L is definable in FGF [≤], (b) is def. in LTL[XF],
(c) is rec. by partially-ordered 1way DFA, (d) M(L) belongs to the variety R
(e) L is a fin disj. union A∗0a1A∗1 . . . akA∗k with ai ∈ Σ,Ai ⊆ Σ and ai 6∈ Ai−1.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 4 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.

• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.
ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).

ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).

ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)

ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸
not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF are ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 5 / 14



Main ingredients for SAT: Part I

Definition (Forward type)
A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6 / 14



Main ingredients for SAT: Part I
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6 / 14



Main ingredients for SAT: Part I
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6 / 14



Main ingredients for SAT: Part I
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 6 / 14



Main ingredients for SAT: Part II

Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI’20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7 / 14



Main ingredients for SAT: Part II
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI’20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7 / 14



Main ingredients for SAT: Part II
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI’20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7 / 14



Main ingredients for SAT: Part II
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI’20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7 / 14



Main ingredients for SAT: Part II
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Proof
via suitable notion of HAF-unravelling, similar to [BBR, ECAI’20]

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 7 / 14



Main ingredients for SAT: Part III (last)

1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.

2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.

4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).

5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).

6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.

Theorem (B., JELIA 2021)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for SAT: Part III (last)
1. Take a satisfiable FGF knowledge base K and any of its models A.
2. Transform A into a HAF model F of K.

3. Make F root-sparse, i.e. F�F∩N should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The “relevant” part of F is of depth ≤ poly(number of types) = exp(K).
6. Use APSpace tableaux-like procedure to construct the relevant part of F.
Theorem (B., JELIA 2021)

Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 8 / 14



Main ingredients for Query entailment: Part I (intro)

Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).
Lemma

If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part I (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).

Lemma
If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part I (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).
Lemma

If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part I (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).
Lemma

If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part I (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).
Lemma

If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?

Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part I (intro)
Recap: Conjunctive query is a conjunction of positive atoms.
Def: K |= q iff for all models A of K we have A |= q (query q matches A)
If A |= K but A 6|= q we call A a countermodel for (K, q).
Lemma

If there is countermodel for (K, q) then there is also a HAF countermodel.

Caveat: W.l.o.g. we assume that queries are preffix and suffix closed, e.g.
if U(x1, x2, x3, x4) ∈ q then U3(x1, x2, x3) ∈ q

The first important step: how to query with HAF-shaped queries?
Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 9 / 14



Main ingredients for Query entailment: Part II (rolling-up)

Idea: Traverse top-down and construct predicates Subt?q(?).
Matchq(x1) := Subtu

q(x1) :=
A(x1) ∧ B(x1) ∧ ∃x2Subtuu′

q (x1, x2) ∧ ∃x2Subtuu′′
q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Query entailment: Part II (rolling-up)
Idea: Traverse top-down and construct predicates Subt?q(?).

Matchq(x1) := Subtu
q(x1) :=

A(x1) ∧ B(x1) ∧ ∃x2Subtuu′
q (x1, x2) ∧ ∃x2Subtuu′′

q (x1, x2)

Subtuu′
q (x1, x2) := R(x1, x2) ∧ S(x1, x2) ∧ B(x2)

Subtuu′′
q (x1, x2) := R(x1, x2) ∧ T2(x1, x2) ∧ A(x2) ∧ C(x2)

∧∃x3 Subtuu′′v ′
q (x1, x2, x3) ∧ ∃x3 Subtu′′v

q (x2, x3)

Subtuu′′v ′
q (x1, x2, x3) := T(x1, x2, x3) ∧ B(x3) ∧ R(x2, x3)

For any HAF-shaped CQ one can polytime compute

the definition of Matchq(xroot) with a meaning that

MatchA
q 6= ∅ iff A |= q.

K 6|= qhaf iff K ∪ {∀x1 ¬Matchqhaf(x1)} is SAT.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 10 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)

To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.

Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots,

(b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and

(c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.

Idea: if K ∪ K�Π then there is no matches of q splitting like Π.
To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part III (beyond HAF-shaped CQs)
To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.
Intuitively it mimics a query match by partitioning variables into three sets:
(a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

With every splitting Π of q we associate a spoiler an FGF -kb K�Π.
Idea: if K ∪ K�Π then there is no matches of q splitting like Π.

To construct a spoiler we must know how to “describe” Π in FGF , in particular cases (a), (b) and (c).

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 11 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .
Repair idea: introduce a bit more constants

to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .
Repair idea: introduce a bit more constants

to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .
Repair idea: introduce a bit more constants

to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .
Repair idea: introduce a bit more constants

to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .

Repair idea: introduce a bit more constants
to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part IV (detecting rooted HAFs)

Simply insert(
∃x2 R(x1, x2) ∧ R(x1, x2) ∧Matchqhaf(x2)

)
(a)

into the DB part of K.

Fatal error! Not in FGF .
Repair idea: introduce a bit more constants

to FGF but not too much.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 12 / 14



Main ingredients for Querying: Part V (algorithm)

1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .

2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.

3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.

4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.

5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.

6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.

Theorem
Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO

For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.
ψ is SAT iff ϕ |= q.

Theorem
The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.

Theorem
The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Main ingredients for Querying: Part V (algorithm)
1.We employ a generalisation of spoilers called super-spoilers K�∗q .
2. If K ∪ K�∗q is SAT then K 6|= q.
3. It turns out that each super-spoiler is of poly-size in |K| + |q|.
4. There are exponentially many super-spoilers.
5. Super-spoilers can be enumerated in exponential time.
6. Hence, we get a reduction to SAT ,. This also works for unions of CQs.
Theorem

Union of CQs entailment over FGF knowledge bases is ExpTime-complete.

Nice application: Forward Guarded Negation fragment of FO
For ψ in (forward) GNFO we poly-compute ϕ ∈ (forward)GF and a UCQ q s.t.

ψ is SAT iff ϕ |= q.
Theorem

The satisfiability of Forward Guarded Negation FO is ExpTime-complete.

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 13 / 14



Conclusions

Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)

3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)

4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

5. Forward TGDs (with Piotr Nalewaja).
Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14



Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q (partial results obtained)
3. FGF+µ or FGF+S behave nicer than GF+TG (with E. Kieronski)
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!
Bartosz “Bart” Bednarczyk Forward Guarded Fragment 14 / 14


