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tos-Tarski Preservation Thm. (£TPT) Craig Interpolation Property (CIP)

= <:> o=V ¢ @» sig(x) < sig(p) N sig(y)
pEY = Ax pExFY

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 1/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

Ax artst(x) AVy (adm(x,y) — bkpr(y))

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires

Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

SAT

2EXPTIME-complete

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .

Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

SAT FMP

2EXPTIME-complete

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .

Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

SAT FMP CIP

2EXPTIME-complete

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

SAT FMP CIP tTPT

2EXPTIME-complete

©O O X O

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

2/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Ly, Loyf, Linf of FO

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.
e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.
e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student

Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]
e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.
e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)

Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVxsr(xy, x2) A r(xz, x3) — r(xi, x3)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVxsr(xy, x2) A r(xz, x3) — r(xi, x3)

SAT

PSpACE/TOWER-complete

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7



Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(x1) — —Vxo(profixp) — admires(xi, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVxsr(xi, x2) A r(xz, x3) — r(x1, x3)

SAT FMP

PSpACE/TOWER-complete

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7




Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVxsr(xi, x2) A r(xz, x3) — r(x1, x3)

SAT FMP CIP

PSpACE/TOWER-complete

o o ?

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7




Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

e The ordered fragments Lpre, Leuf, Linf of FO are obtained by keeping the variables ordered.

e |n atoms we can use only pref/suf/inf ixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof(xy) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vx1(lect(x1) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVxsr(xy, x2) A r(xz, x3) — r(xi, x3)

SAT FMP CIP tTPT

PSpACE/TOWER-complete

@ o 2 ?

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 3/ 7




On the infamous work of Purdy

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.
is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.

is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Error 1. SAT of Ly is TOWER-hard (discovered by lan Pratt-Hartmann)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.

is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Error 1. SAT of Ly is TOWER-hard (discovered by lan Pratt-Hartmann)

Error 2. Lgys does not enjoy CIP (this work!)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.

is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Error 1. SAT of Ly is TOWER-hard (discovered by lan Pratt-Hartmann)

Error 2. Lgys does not enjoy CIP (this work!)

Fact: £PTP proof of Purdy lack of mathematical arguments.
Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.

is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Error 1. SAT of Ly is TOWER-hard (discovered by lan Pratt-Hartmann)

Error 2. Lgys does not enjoy CIP (this work!)

Fact: £PTP proof of Purdy lack of mathematical arguments.
Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

Conclusion:

4 /7



On the infamous work of Purdy

WiLLiaM C. PURDY Complexity and Nicety
of Fluted Logic

Abstr@ct. Fluted Logic | essentially first-order predicate logic deprived of variables.
The lad @ é b in reduced expressiveness. Nevertheless, many logical prob-
lems th Qnatural language, such as the famous Schubert’s Steamroller,
bgic. Further evidence of the expressiveness of fluted logic is
jon logics. Already it has been shown that fluted logic is
property. This paper shows that fluted logic has the
at|deciding satisfiability is NEXPTIME-complete.

is ‘nice’, that is, it shares with figgt-order predicate
the interpolation property and model preservation properties. h

Error 1. SAT of Ly is TOWER-hard (discovered by lan Pratt-Hartmann)
Conclusion:

Error 2. Lgys does not enjoy CIP (this work!) We need to study ordered logics more!

Fact: £PTP proof of Purdy lack of mathematical arguments.
Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 4 /7



Our contribution (Part 1)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf
1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf
1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers

Lore ( Gpr? ® Solid: more expr. Dashed: incomp.
\stfﬁ i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
i ;g? Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Gsur

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

Loe < G
. Pre pr? ® Solid: more expr. Dashed: incomp.
| S
\Qs“% :3 Ppre = Vx1VxoVx3 R(Xl, X2, X3) — S(Xl, X2)
< 3 Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Ppre > 'S
I—suf ~ I—inf< Ginf < Gsuf

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

Loe < G
; pre \ pr? ® Solid: more expr. Dashed: incomp.
| | &
\Qs“% | :3 Ppre = Vx1VxoVx3 R(Xl7 X2, X3) — S(Xl, X2)
: . 3 Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Ppre > 'S
I—suf ~ I—inf< Ginf < Gsuf

3. Lyr and Li, do not enjoy CIP,

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

L, € G
; pre pr? ® Solid: more expr. Dashed: incomp.
| [ &
\Qs“% : :3 Ppre = \V/X1\V/X2VX3 R(Xl, X2, X3) — S(Xl, X2)
: . : ) Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Sppre 'S
I—suf ~ I—inf< Ginf < Gsuf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

L G
| pre pr? © Solid: more expr. Dashed: incomp.
| | &
\Qs“% | :3 Ppre = Vx1VxoVx3 R(Xl, X2, X3) — S(Xl, X2)
: } 3 Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Ppre s TS
I—suf ~ I—inf< Ginf < Gsuf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:

© = Vx1VxVx3 [R(x1, %) A R(x2, x3) = (P1(x1) A Pa(x3))]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
qu’s i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;g? Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:

0 = Vx1VxVx3 [R(x1, x2) A R(x2, x3) = (P1(x1) A Pa(x3))] AVxiVxo [(P1(x1) A Pa(x3)) — R(x1, x)]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
qu’s i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;g? Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:

0 = Vx1VxVx3 [R(x1, x2) A R(x2, x3) = (P1(x1) A Pa(x3))] AVxiVxo [(P1(x1) A Pa(x3)) — R(x1, x)]
¢ = E|X1§|X2§|X3[R(X1, X2) N\ R(XQ, X3) A\ Ql(xl) N\ QQ(XQ)]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
qu’s i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;g? Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:
@ = Vx1VxoVx3 [R(x1, x2) A R(x0, x3) = (P1(x1) A Pa(x3))] AVxaVxo [(P1(x1) A Pa(x3)) — R(x1, x2)]
¢ = E|X1§|X2§|X3[R(X1, X2) AN R(XQ, X3) N Ql(xl) N\ QQ(XQ)] /\VXl\V/XQ [(Ql(xl) N QQ(XQ)) — _IR(Xl, X2)]

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
qu’s i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;g? Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:
@ = Vx1VxoVx3 [R(x1, x2) A R(x0, x3) = (P1(x1) A Pa(x3))] AVxaVxo [(P1(x1) A Pa(x3)) — R(x1, x2)]
¢ = E|X1§|X2§|X3[R(X1, X2) AN R(XQ, X3) N Ql(xl) N\ QQ(XQ)] /\VXl\V/XQ [(Ql(xl) N QQ(XQ)) — _IR(Xl, X2)]

o | = (why?)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
\stfs i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;§ Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:
@ = Vx1VxoVx3 [R(x1, x2) A R(x0, x3) = (P1(x1) A Pa(x3))] AVx1Vxo [(P1(x1) A Pa(x3)) — R(x1, x0)]
¢ = E|X1§|X2§|X3[R(X1, X2) AN R(XQ, X3) N Ql(xl) N\ QQ(XQ)] /\VXl\V/XQ [(Ql(xl) N QQ(XQ)) — _IR(Xl, X2)]

o b=~ (why?) - R R R

but A = ¢ and B |= 1 are - 0 e @ @) >%
R R R R

Py Py P1,P2 Q1 Q2

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
\stfs i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;§ Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:
@ = Vx1VxoVx3 [R(x1, x2) A R(x0, x3) = (P1(x1) A Pa(x3))] AVx1Vxo [(P1(x1) A Pa(x3)) — R(x1, x0)]
¢ = E|X1§|X2§|X3[R(X1, X2) AN R(XQ, X3) N Ql(xl) N\ QQ(XQ)] /\VXl\V/XQ [(Ql(xl) N QQ(XQ)) — _IR(Xl, X2)]

o b~ (why?) - R R R
but 2 = ¢ and B |= 1 are - @ e @ - @) = >%
Linf[{ R }]-bisimilar! P, P, P, P, Q1 Q2

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)
We study Ly, Lous, Lins and their guarded subfragments Gpe, Gsuf, Ginf

1. We introduced a suitable notion of bisimulation.

2. Comparison of relative expressive powers + Van-Benthem Style Theorems, i.e. FO/~| = L.

I;'p"? ( Gpr? ® Solid: more expr. Dashed: incomp.
\stfs i i§ ©pre := Vx1VxVx3 R(x1, X2, x3) — S(x1, x2)
: i ;§ Osuf = Vx1Vx0Vx3 R(x1, x2, x3) — T(x2, x3)
Lsuf = Linf < Ginf < Guf

3. Lsyr and Li,s do not enjoy CIP. A very simple counterexample:
@ = Vx1VxoVx3 [R(x1, x2) A R(x0, x3) = (P1(x1) A Pa(x3))] AVx1Vxo [(P1(x1) A Pa(x3)) — R(x1, x0)]
¢ = E|X1§|X2§|X3[R(X1, X2) AN R(XQ, X3) N Ql(xl) N\ QQ(XQ)] /\VXl\V/XQ [(Ql(xl) N QQ(XQ)) — _IR(Xl, X2)]

p =~ (why?) R R

R

2A .= B =
but 2 = ¢ and B |= 1 are - - e @ @ >%
Line[{ R }]-bisimilar! = no Li-interp. p, R P, R P, P Q1 R R

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 5/ 7



Our contribution (Part 1)

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gouf, Gins enjoy CIP.

Proof method: interpolation via amalgamation

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation

@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, € L

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, € L there is an amalgam I s.t.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 4 = ¢ A1) then

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 8 = ¢ A1 then L has CIP.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 8 = ¢ A1 then L has CIP.

So we take

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 8 = ¢ A1 then L has CIP.
So we take ¢, ¥ with models 2 = ¢ and 5 |= ¢ and

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 8 = ¢ A1 then L has CIP.
So we take ¢, 1) with models 2l = ¢ and 5 = ) and amalgamate 2(, 95 into a single Sl |= © A ).

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam il s.t. 8 = ¢ A1 then L has CIP.
So we take ¢, 1) with models 2l = ¢ and 5 = ) and amalgamate 2(, 95 into a single Sl |= © A ).

Tree models

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam i s.t. U = ¢ A then L has CIP.
So we take , ¥ with models 2l = ¢ and 5 |= v and amalgamate 2[5 into a single Ll = © A ).

A novel “complete and repair” model construction method

Tree models

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam i s.t. U = ¢ A then L has CIP.
So we take , ¥ with models 2l = ¢ and 5 |= v and amalgamate 2[5 into a single Ll = © A ).

A novel “complete and repair” model construction method

Works beyond forward GF. A good meta-heuristic,

Tree models

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam i s.t. U = ¢ A then L has CIP.
So we take , ¥ with models 2l = ¢ and 5 |= v and amalgamate 2[5 into a single Ll = © A ).

A novel “complete and repair” model construction method

Tree models
Works beyond forward GF. A good meta-heuristic,

5. Some initial results on the model checking problem:

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics 6/ 7



Our contribution (Part 1)
4. We prove that Ly and Gpre, Gous, Gins enjoy CIP.
Proof method: interpolation via amalgamation
@, are L-jointly-consistent iff there are L-bisimilar (over common vocab.) models 2 = ¢ and B = .
Lemma: If for all L-jointly-consistent ¢, 1) € L there is an amalgam i s.t. U = ¢ A then L has CIP.
So we take , ¥ with models 2l = ¢ and 5 |= v and amalgamate 2[5 into a single Ll = © A ).
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Tree models
Works beyond forward GF. A good meta-heuristic,

5. Some initial results on the model checking problem: PSPACE-c for Ly, in PTIME for Lgys and Lpye.
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Icons that appear in the paper were downloaded from flaticon.com. No changes have been made.

Bartosz “Bart” Bednarczyk Towards a Model Theory of Ordered Logics

77


https://www.flaticon.com/

