Why propositional quantification makes
modal logics on trees robustly hard ?

(joint paper with Stéphane Demri from CNRS)

TECHNISCHE Bartosz Bednarczyk
U N IVE RS I TKT bartosz.bednarczyk@cs.uni.wroc.pl
DRESDEN

Technische Universitidt Dresden
and University of Wroctaw

~,

%ﬁ Uniwersytet

R) Wroctawski LICS 2019
Vancouver, June 26th, 2019

bartosz.bednarczyk@cs.uni.wroc.pl

2016

1956 1992 1998 2004 2010

1980

1974

A concept of separation

A few examples

2 /22

Propositional quantification - a more general setting

m Separation = colouring parts with different colours

3/ 22

Propositional quantification - a more general setting

m Separation = colouring parts with different colours

®m Propositional quantification

M = 0. o @ is satisfied after colouring 9 with O

/N O3|= 0. & é@/@j}: 0

3/ 22

Propositional Quantification = undecidability

Propositional quantifiers in modal logic
by
KIT FINE

m Modal IOgiCSI I(7 S4, GL. (Oxford University)
®m Temporal logics: QLTL, QCTL

n and even more... In this paper I shall present

on modal theories which ¢
paper is in two parts: in
non-quantificational
theories whose no;

The end of the story? contained in S5.

same language L.

of the results I have obtained
ifiers for propositions. The
I consider theories whose
ond part I consider
weaker than or not

each theory has the
tional variables p,,

? e set V of proposi-
»., the oper: (or), ~(not) and O
(necessarily), the uniV@%al quantifier (p), ™® propositional variable,

and brackets (and). The formulas of L are then defined in the
usual way.

4/ 22

Propositional Quantification = undecidability

Propositional quantifiers in modal logic
by
KIT FINE

m Modal IOgiCSI K, S4, GL. (Oxford University)
®m Temporal logics: QLTL, QCTL

n and even more... In this paper I shall present

on modal theories which
paper is in two parts: in
non-quantificational
theories whose no;

The end of the story? contained in S5.
same language L.

of the results I have obtained
ifiers for propositions. The
I consider theories whose
ond part I consider
weaker than or not

each theory has the
tional variables p,,

? e set V of proposi-
»., the oper: (or), ~(not) and O
(necessarily), the uni quantifier (p), ™®propositional variable,

and brackets (and). The formulas of L are then defined in the
usual way.

Not really. Consider trees as models!

Tree semantics: the cure for undecidability

The cure for undecidability

Instead of colouring models colour its tree unfolding!]

5 /22

Tree semantics: the cure for undecidability

Decidability on trees [Sistla et al, 87|, [Laroussinie et al, 14]

QCTL, QCTL* and QLTL on trees are TOWER-complete.

MSO

TOWER-complete

6 /22

Tree semantics: the cure for undecidability

Decidability on trees [Sistla et al, 87|, [Laroussinie et al, 14]

QCTL, QCTL* and QLTL on trees are TOWER-complete.

MSO

TOWER-complete

But what about standard modal logics? THIS TALK!

6/ 22

The main goal of this paper

The main question in this talk

What is the exact complexity of quantified MLs on trees?

TOWER-hardness for previous logics required until operator.

7/ 22

The main goal of this paper

The main question in this talk

What is the exact complexity of quantified MLs on trees?

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

7/ 22

The main goal of this paper

The main question in this talk
What is the exact complexity of quantified MLs on trees?]

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

The answer (unpleasant truth)

Quantified standard MLs on trees are TOWER-complete.]

7/ 22

The main goal of this paper

The main question in this talk
What is the exact complexity of quantified MLs on trees?]

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

The answer (unpleasant truth)

Quantified standard MLs on trees are TOWER-complete.]

We sketch the hardness proof for QCTLypy =~ QK.

7/ 22

Quantified Computation-Tree Logic with X only

@ atomic propositions: O, Q,
@ boolean combinators: =, o V 1, o A 1, ...

e modalities:

—O- — SO —0O- -
O - O--
0=¢ e=¢
EX o AX -
v >0 - 14 O--
O - O--
o o - o o -

@ propositional quantifiers:

- O_»O__
- O_-
ﬁ- J0p o o-
- O_»O__

8/ 22

Expressivity example: uniqueness

Non-uniqueness

0. (EX(O A) ANEX(=O A) o o

€O
€O

9 /22

Expressivity example: uniqueness

Non-uniqueness

30. (EX(O A 9) AEX(-O A ¢))

O O o O
(2
Uniqueness
EX(@)A-FO. (EX(ON) NEX(-OAp)) & ... O ™0
Y P TP T

9 /22

A notion of local nominals

® Uniqueness expressible but only in the limited scope

® [ocal nominal = nominal but in limited scope

10 / 22

A notion of local nominals

® Uniqueness expressible but only in the limited scope
® [ocal nominal = nominal but in limited scope

m Useful operators: nom(x,1vl) (binder) and @Yy (at).

O<O—>O— -
oI~
nom(x, Ivl) = EXY] (x) O—>0O--
ey = EXM(x A) O- :

e.g. nom(x, 3)

10 / 22

Multiple nominals

O—~O- -
O -
Let diff-nom(xy, ..., Xy, vl) be @ -
O--
/\ nom(x;j, k) A /\ -0y,
ielL] o ‘ @ -
ic[l,n i<j€[1,n]
O--
nom(y,1) A diff-nom(x,z,3)
11/ 22

Enforcing exponential degree

An example of local nominals technique

® Label children with bits P = {po,p1,..-,Pn-1}-

—\po/\.../\—\Pn)/// PoAN ... APn—1
0 1 2

2" -1

12 / 22

Enforcing exponential degree

An example of local nominals technique

® Label children with bits P = {po,p1,..-,Pn-1}-

—\po/\.../\—\Pn)/// PoAN ... APn—1
0 1 2

2" -1
m There exists a node carrying zero.

EX(=po A =p1-.. A "Pn_1)

12 / 22

Enforcing exponential degree

An example of local nominals technique

® Label children with bits P = {po,p1,..-,Pn-1}-

‘pO/\"'/‘pn)/// POA .- APn_1
o 1 2

2" -1
m There exists a node carrying zero.

EX(=po A =p1-.. A "Pn_1)

® There are no two nodes with the same number.

VX, y diff—nom(x, Y, 1) — —|(/\ @ip o @ip)
peP
12 / 22

-____________________________________
Successor relation (aka. adding plus one)

Vx nom(x, 1) A x # 2"—1 — Fy diff-nom(x, y,1) Ay = x+1

for all nodes x except the last there is a successor y
O O s O O
X y=x+1

13 / 22

How to express y = x + 17

101110101111 x
+ 1 1
101110110000 vy=x+1

Il
o

i—1 n—1
— | o </\ —pj A Pi> A /\ @x(ps) < ©y(p;)
j=0

j=it1

reset previous bits, set pj rewrite other bits

14 / 22

How to prove TOWER-hardness? Part I: k—Tillings

exp(1,n) = 2%, exp(k + 1,n) = 29%P(kn)

|
Constraints Rules

» Finite set of puzzles

» Horizontal and vertical constraints
» Goal: Tile a board of the size

m exp(k,n) x exp(k, n)

15 / 22

How to prove TOWER-hardness? Part II: Huge degree

Type k

Type (k-1)

Type (k-2)

Type 0

16 / 22

nb=t(k+1,n)—1

val = T,nb=
val = T,nb=t(k,n) —1

val =1
nb =
L val=T,nb=t(k—1,n) —1
Sval =1

" nb =t(k—1,n) —

\ 4 <

‘nb:l

Pn1=...=p1=L,pp=T

Enforcing doubly-exponential degree

Number of a node ~~ encoded on val predicates

\1

on_1 on_q

17 / 22

Enforcing doubly-exponential degree

Number of a node ~~ encoded on val predicates

\?

on_1 on_q

m There exists a node carrying zero. EX(AX(—val))

17 / 22

Enforcing doubly-exponential degree

N

Number of a node ~~ encoded on val predicates

2" —1

m There exists a node carrying zero. EX(AX(—val))
®m There are no two nodes with the same number. 777

m Every node has successor. 777

17 / 22

There are no two nodes with the same number.

18 / 22

There are no two nodes with the same number.

Vx, y diffnom(x, y, 1) = - equalNum(x, y)

18 / 22

There are no two nodes with the same number.

- equalNum(x, v) def

Fa3b (diff-nom(a, b, 2) A O} (EX a) A @ (EX b)) A
equalNum(a, b) A = (@2(val) A @F(val))

18 / 22

There are no two nodes with the same number.

®

0
d;

- equalNum(x,y) =

Fa3b (diff-nom(a, b, 2) A @} (EX a) A @ (EX b)) A
equalNum(a, b) A = (@2(val) A @F(val))

18 / 22

There are no two nodes with the same number.

®
0

- equalNum(x, v) de
Fa3b (diff-nom(a, b, 2) A @} (EX a) A @ (EX b)) A
equalNum(a, b) A = (@2(val) A @F(val))

What about successor relation?

18 / 22

More general way of adding plus one

an abstraction of the previous technique

1011101 1111 X

101110110000 vy=x+1

A nice abstraction:

X left, to be rewritten =0 right = 111...1

x+1 | left, to be rewritten =1 right =000...0

19 / 22

Summing it up

QCTLgx on trees is k-NExpTime-hard for each k € N.

20 / 22

Summing it up

QCTLgx on trees is k-NExpTime-hard for each k € N.

Reduction was uniform, so QCTLgx is TOWER-hard.
The upper bound from MSO on trees.

20 / 22

Summing it up

A part of the main result
QCTLgx on trees is k-NExpTime-hard for each k € N.]

Reduction was uniform, so QCTLgx is TOWER-hard.
The upper bound from MSO on trees.

Over trees QCTLgx is TOWER—-complete.]

20 / 22

Summing it up

A part of the main result
QCTLgx on trees is k-NExpTime-hard for each k € N.]

Reduction was uniform, so QCTLgx is TOWER-hard.
The upper bound from MSO on trees.

Over trees QCTLgx is TOWER—-complete.]

Main ingredient = Huge degree.
What happens when degree is bounded?

20 / 22

Trees with bounded degree

Bounded degree trees

QCTLgx is AExpPol-complete on trees with bounded degree.

AExpPol = alternating exp time with poly alternations

Main ingredients:

21 / 22

Trees with bounded degree

Bounded degree trees

QCTLgx is AExpPol-complete on trees with bounded degree.

AExpPol = alternating exp time with poly alternations

Main ingredients:
® Upper bound = exp models + model checking algorithm

® Lower bound = exp multi-tilings [Bozzelli et al, 2018]

21 / 22

Conclusions

Our results (arbitrary trees) N

Quantified K (aka. QCTLgx) on trees is TOWER-complete.
Hardness applies also to GL, S4, K4, KD, QCTLypr on trees.

Our results (bounded degree trees) N

QCTLgx is AExpPol-complete on trees with bounded degree.

22 / 22

Conclusions

Our results (arbitrary trees) N

Quantified K (aka. QCTLgx) on trees is TOWER-complete.
Hardness applies also to GL, S4, K4, KD, QCTLypr on trees.

Our results (bounded degree trees) N

QCTLgx is AExpPol-complete on trees with bounded degree.

Open problems:
® Pxpressive power of QCTLgx?

® Nice elementary fragments ?

22 / 22

Conclusions

Our results (arbitrary trees) \

Quantified K (aka. QCTLgx) on trees is TOWER-complete.
Hardness applies also to GL, S4, K4, KD, QCTLypr on trees.

Our results (bounded degree trees) N

QCTLgx is AExpPol-complete on trees with bounded degree.

ThankyoulfoByourattention

Open problems:
® Pxpressive power of QCTLgx?

® Nice elementary fragments ?

22 / 22

Work

