
Why propositional quantification makes
modal logics on trees robustly hard ?

(joint paper with Stéphane Demri from CNRS)

Bartosz Bednarczyk
bartosz.bednarczyk@cs.uni.wroc.pl

Technische Universität Dresden
and University of Wrocław

LICS 2019
Vancouver, June 26th, 2019

bartosz.bednarczyk@cs.uni.wroc.pl

A concept of separation

= ∗

A few examples:

1974 1980 1986 1992 1998 2004 2010 2016

Qua
nti

fied
Mod

al
log

ic K
[Fine

70]

Qua
nti

fied
LT

L [St
isla

et
al,

83]

Sep
ara

tio
n log

ic [Reyn
old

s, 2
002

]

Lo
gic

s of
pu

bli
c an

no
un

cem
ent

[Plaz
a,

89]

Rela
tio

n-c
ha

ng
ing

Mod
al

Lo
gic

s [Auch
er

et
al,

200
9]

Sep
ara

tin
g Mod

alit
ies

[Cou
rta

ult
et

al,
201

6]

Te
am

mod
al

log
ic [M

üll
er

201
4]

Mod
al

sep
ara

tio
n log

ic [Fe
rva

ri e
t al,

201
8]

2 / 22

Propositional quantification - a more general setting
� Separation ≈ colouring parts with different colours

= ∗ =

� Propositional quantification

M |= ∃ .ϕ
def
= ϕ is satisfied after colouring M with

3 / 22

Propositional quantification - a more general setting
� Separation ≈ colouring parts with different colours

= ∗ =

� Propositional quantification

M |= ∃ .ϕ
def
= ϕ is satisfied after colouring M with

3 / 22

Propositional Quantification = undecidability since 1970

� Modal logics: K,S4,GL.
� Temporal logics: QLTL,QCTL
� and even more...

The end of the story?

Not really. Consider trees as models!

4 / 22

Propositional Quantification = undecidability since 1970

� Modal logics: K,S4,GL.
� Temporal logics: QLTL,QCTL
� and even more...

The end of the story?

Not really. Consider trees as models!

4 / 22

Tree semantics: the cure for undecidability

Instead of colouring models colour its tree unfolding!
The cure for undecidability

5 / 22

Tree semantics: the cure for undecidability

QCTL,QCTL∗ and QLTL on trees are TOWER-complete.
Decidability on trees [Sistla et al, 87], [Laroussinie et al, 14]

But what about standard modal logics? THIS TALK!

6 / 22

Tree semantics: the cure for undecidability

QCTL,QCTL∗ and QLTL on trees are TOWER-complete.
Decidability on trees [Sistla et al, 87], [Laroussinie et al, 14]

But what about standard modal logics? THIS TALK!
6 / 22

The main goal of this paper

What is the exact complexity of quantified MLs on trees?
The main question in this talk

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

Quantified standard MLs on trees are TOWER-complete.
The answer (unpleasant truth)

We sketch the hardness proof for QCTLEX ≈ QK.

7 / 22

The main goal of this paper

What is the exact complexity of quantified MLs on trees?
The main question in this talk

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

Quantified standard MLs on trees are TOWER-complete.
The answer (unpleasant truth)

We sketch the hardness proof for QCTLEX ≈ QK.

7 / 22

The main goal of this paper

What is the exact complexity of quantified MLs on trees?
The main question in this talk

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

Quantified standard MLs on trees are TOWER-complete.
The answer (unpleasant truth)

We sketch the hardness proof for QCTLEX ≈ QK.

7 / 22

The main goal of this paper

What is the exact complexity of quantified MLs on trees?
The main question in this talk

TOWER-hardness for previous logics required until operator.

So maybe modal logics are elementarly decidable?

Quantified standard MLs on trees are TOWER-complete.
The answer (unpleasant truth)

We sketch the hardness proof for QCTLEX ≈ QK.

7 / 22

Quantified Computation-Tree Logic with X only

atomic propositions: , , ...

boolean combinators: ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ...

modalities:

EX ϕ

ϕ

AX ϕ

ϕ

ϕ

propositional quantifiers:

∃ .ϕ

8 / 22

Expressivity example: uniqueness

Non-uniqueness

∃ . (EX(∧ ϕ) ∧ EX(¬ ∧ ϕ)) . . .
ϕ ϕ

Uniqueness

EX(ϕ)∧¬∃ . (EX(∧ ϕ) ∧ EX(¬ ∧ ϕ)) . . .
ϕ ¬ϕ ¬ϕ ¬ϕ ¬ϕ

9 / 22

Expressivity example: uniqueness

Non-uniqueness

∃ . (EX(∧ ϕ) ∧ EX(¬ ∧ ϕ)) . . .
ϕ ϕ

Uniqueness

EX(ϕ)∧¬∃ . (EX(∧ ϕ) ∧ EX(¬ ∧ ϕ)) . . .
ϕ ¬ϕ ¬ϕ ¬ϕ ¬ϕ

9 / 22

A notion of local nominals
� Uniqueness expressible but only in the limited scope
� Local nominal = nominal but in limited scope

� Useful operators: nom(x, lvl) (binder) and @lvl
x ϕ (at).

nom(x, lvl) = EXlvl
=1(x)

@lvl
x ϕ = EXlvl(x ∧ ϕ)

e.g. nom(x, 3)

10 / 22

A notion of local nominals
� Uniqueness expressible but only in the limited scope
� Local nominal = nominal but in limited scope
� Useful operators: nom(x, lvl) (binder) and @lvl

x ϕ (at).

nom(x, lvl) = EXlvl
=1(x)

@lvl
x ϕ = EXlvl(x ∧ ϕ)

e.g. nom(x, 3)

10 / 22

Multiple nominals

Let diff-nom(x1, . . . , xn, lvl) be∧
i∈[1,n]

nom(xi, k) ∧
∧

i<j∈[1,n]

¬@lvl
xi xj

nom(y, 1) ∧ diff-nom(x, z, 3)

11 / 22

Enforcing exponential degree
An example of local nominals technique

� Label children with bits P = {p0,p1, . . . , pn−1}.

. . .
0 1 2 2n−1

¬p0 ∧ . . . ∧ ¬pn−1 p0 ∧ . . . ∧ pn−1

� There exists a node carrying zero.

EX(¬p0 ∧ ¬p1 . . . ∧ ¬pn−1)

� There are no two nodes with the same number.

∀x, y diff-nom(x, y, 1) → ¬(
∧
p∈P

@1
xp ↔ @1

yp)

12 / 22

Enforcing exponential degree
An example of local nominals technique

� Label children with bits P = {p0,p1, . . . , pn−1}.

. . .
0 1 2 2n−1

¬p0 ∧ . . . ∧ ¬pn−1 p0 ∧ . . . ∧ pn−1

� There exists a node carrying zero.

EX(¬p0 ∧ ¬p1 . . . ∧ ¬pn−1)

� There are no two nodes with the same number.

∀x, y diff-nom(x, y, 1) → ¬(
∧
p∈P

@1
xp ↔ @1

yp)

12 / 22

Enforcing exponential degree
An example of local nominals technique

� Label children with bits P = {p0,p1, . . . , pn−1}.

. . .
0 1 2 2n−1

¬p0 ∧ . . . ∧ ¬pn−1 p0 ∧ . . . ∧ pn−1

� There exists a node carrying zero.

EX(¬p0 ∧ ¬p1 . . . ∧ ¬pn−1)

� There are no two nodes with the same number.

∀x, y diff-nom(x, y, 1) → ¬(
∧
p∈P

@1
xp ↔ @1

yp)

12 / 22

Successor relation (aka. adding plus one)

∀x nom(x, 1) ∧ x 6= 2n−1︸ ︷︷ ︸
for all nodes x except the last

→ ∃y diff-nom(x, y, 1) ∧ y = x+1︸ ︷︷ ︸
there is a successor y

. . .
x y=x+1

13 / 22

How to express y = x + 1?

1 0 1 1 1 0 1 0 1 1 1 1 x
+ 1 1

1 0 1 1 1 0 1 1 0 0 0 0 y = x + 1

n−1∧
i=0

 @1
x

(
¬pi ∧

i−1∧
j=0

pj

)
︸ ︷︷ ︸

look for the first zero bit

→

 @1
y

(i−1∧
j=0

¬pj ∧ pi

)
︸ ︷︷ ︸

reset previous bits, set pi

∧
n−1∧

j=i+1

@1
x(pj) ↔ @1

y(pj)︸ ︷︷ ︸
rewrite other bits




14 / 22

How to prove TOWER–hardness? Part I: k–Tillings

exp(1,n) = 2n, exp(k + 1,n) = 2exp(k,n)

Constraints Rules
I Finite set of puzzles

I Horizontal and vertical constraints
I Goal: Tile a board of the size

exp(k,n)× exp(k,n)

15 / 22

How to prove TOWER-hardness? Part II: Huge degree

16 / 22

Enforcing doubly-exponential degree

. . .
0 1 2 2n−1

¬val
¬val

. . .
0 1 2 2n−1

val val

.

Number of a node encoded on val predicates

� There exists a node carrying zero. EX(AX(¬val))
� There are no two nodes with the same number. ???

� Every node has successor. ???

17 / 22

Enforcing doubly-exponential degree

. . .
0 1 2 2n−1

¬val
¬val

. . .
0 1 2 2n−1

val val

.

Number of a node encoded on val predicates

� There exists a node carrying zero. EX(AX(¬val))

� There are no two nodes with the same number. ???

� Every node has successor. ???

17 / 22

Enforcing doubly-exponential degree

. . .
0 1 2 2n−1

¬val
¬val

. . .
0 1 2 2n−1

val val

.

Number of a node encoded on val predicates

� There exists a node carrying zero. EX(AX(¬val))
� There are no two nodes with the same number. ???

� Every node has successor. ???

17 / 22

There are no two nodes with the same number.

. . .
0 1 2 2n−1

¬val
¬val

. . .
0 1 2 2n−1

val val

.

18 / 22

There are no two nodes with the same number.

x

. . .
0 1 2 2n−1

¬val
¬val

y

. . .
0 1 2 2n−1

val val

.

∀x, y diff-nom(x, y, 1) → ¬ equalNum(x, y)

18 / 22

There are no two nodes with the same number.

x

a . . .
0 1 2 2n−1

¬val
¬val

y

b . . .
0 1 2 2n−1

val val

.

¬ equalNum(x, y) def
=

∃a∃b
(
diff-nom(a,b, 2) ∧ @1

x(EX a) ∧ @1
y(EX b)

)
∧

equalNum(a,b) ∧ ¬
(
@2

a(val) ∧ @2
b(val)

)
18 / 22

There are no two nodes with the same number.

x

a . . .
0

¬val

y

b . . .
0

val

.

¬ equalNum(x, y) def
=

∃a∃b
(
diff-nom(a,b, 2) ∧ @1

x(EX a) ∧ @1
y(EX b)

)
∧

equalNum(a,b) ∧ ¬
(
@2

a(val) ∧ @2
b(val)

)
18 / 22

There are no two nodes with the same number.

x

a . . .
0

¬val

y

b . . .
0

val

.

¬ equalNum(x, y) def
=

∃a∃b
(
diff-nom(a,b, 2) ∧ @1

x(EX a) ∧ @1
y(EX b)

)
∧

equalNum(a,b) ∧ ¬
(
@2

a(val) ∧ @2
b(val)

)
What about successor relation?

18 / 22

More general way of adding plus one
an abstraction of the previous technique

1 0 1 1 1 0 1 0 1 1 1 1 x
+ 1 1

1 0 1 1 1 0 1 1 0 0 0 0 y = x + 1

A nice abstraction:

x left, to be rewritten selector = 0 right = 111 . . . 1

x+1 left, to be rewritten selector = 1 right = 000 . . . 0

19 / 22

Summing it up

QCTLEX on trees is k–NExpTime–hard for each k ∈ N.
A part of the main result

Reduction was uniform, so QCTLEX is TOWER–hard.
The upper bound from MSO on trees.

Over trees QCTLEX is TOWER–complete.
The main result

Main ingredient = Huge degree.
What happens when degree is bounded?

20 / 22

Summing it up

QCTLEX on trees is k–NExpTime–hard for each k ∈ N.
A part of the main result

Reduction was uniform, so QCTLEX is TOWER–hard.
The upper bound from MSO on trees.

Over trees QCTLEX is TOWER–complete.
The main result

Main ingredient = Huge degree.
What happens when degree is bounded?

20 / 22

Summing it up

QCTLEX on trees is k–NExpTime–hard for each k ∈ N.
A part of the main result

Reduction was uniform, so QCTLEX is TOWER–hard.
The upper bound from MSO on trees.

Over trees QCTLEX is TOWER–complete.
The main result

Main ingredient = Huge degree.
What happens when degree is bounded?

20 / 22

Summing it up

QCTLEX on trees is k–NExpTime–hard for each k ∈ N.
A part of the main result

Reduction was uniform, so QCTLEX is TOWER–hard.
The upper bound from MSO on trees.

Over trees QCTLEX is TOWER–complete.
The main result

Main ingredient = Huge degree.
What happens when degree is bounded?

20 / 22

Trees with bounded degree

QCTLEX is AExpPol-complete on trees with bounded degree.
Bounded degree trees

AExpPol = alternating exp time with poly alternations

Main ingredients:

� Upper bound = exp models + model checking algorithm
� Lower bound = exp multi-tilings [Bozzelli et al, 2018]

21 / 22

Trees with bounded degree

QCTLEX is AExpPol-complete on trees with bounded degree.
Bounded degree trees

AExpPol = alternating exp time with poly alternations

Main ingredients:
� Upper bound = exp models + model checking algorithm
� Lower bound = exp multi-tilings [Bozzelli et al, 2018]

21 / 22

Conclusions

Quantified K (aka. QCTLEX) on trees is TOWER-complete.
Hardness applies also to GL,S4,K4,KD,QCTLEF on trees.

Our results (arbitrary trees)

QCTLEX is AExpPol-complete on trees with bounded degree.
Our results (bounded degree trees)

Open problems:
� Expressive power of QCTLEX?
� Nice elementary fragments ?

22 / 22

Conclusions

Quantified K (aka. QCTLEX) on trees is TOWER-complete.
Hardness applies also to GL,S4,K4,KD,QCTLEF on trees.

Our results (arbitrary trees)

QCTLEX is AExpPol-complete on trees with bounded degree.
Our results (bounded degree trees)

Open problems:
� Expressive power of QCTLEX?
� Nice elementary fragments ?

22 / 22

Conclusions

Quantified K (aka. QCTLEX) on trees is TOWER-complete.
Hardness applies also to GL,S4,K4,KD,QCTLEF on trees.

Our results (arbitrary trees)

QCTLEX is AExpPol-complete on trees with bounded degree.
Our results (bounded degree trees)

Open problems:
� Expressive power of QCTLEX?
� Nice elementary fragments ?

22 / 22

Work

