
Exploiting forwardness: Satisfiability and Query Entailment in

Forward Guarded Fragment
May 17, 2021, JELIA 2021

Bartosz “Bart” Bednarczyk

TU Dresden & University of Wrocław

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent

Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel

Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]

As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]

2. Some of them increase the complexity exponentially:
E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]

more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?

Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz’08]

hasMother ⊆ hasParent Car v (= 4).hasPartWheel
Also with arithmetic and statistical properties [Baader, B., Rudolph’20]
As well as with regular expr, fixed points, (safe) role combination [B.’21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.’09], nominals (a.k.a. constants) [Ngo et al.’16]
more: inverses [Lutz’07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCI and the others hard?
Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.

• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
Example 1. Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))
Example 2. Every artist envies every bekeeper he admires

∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]
Coexample 3. Every artist admires every beekeeper

∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))
Theorem (Grädel 1999)

The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every bekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

Theorem (Grädel 1999)
The satisfiability problem for GF is 2ExpTime-complete.

Theorem (Bárány et al. 2013)
Conjunctive query entailment problem for GF is 2ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.

• In atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))
Example 2. No lecturer introduces any professor to every student

∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))
Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)

Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)

Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .

Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
• The fluted fragment of FO is obtained by keeping the variables ordered.
• In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor
∀x1(stud(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2)))

Example 2. No lecturer introduces any professor to every student
∀x1(lect(x1)→ ¬∃x2(prof(x2) ∧ ∀x3(stud(x3)→ intro(x1, x2, x3))))

Coexample 1. ∀x1r(x1, x1)
Coexample 2. ∀x1∀x2r(x1, x2)→ s(x2, x1)
Coexample 3. ∀x1∀x2∀x3r(x1, x2) ∧ r(x2, x3)→ r(x1, x3)

Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is Tower-complete.

If we replace suffices by infixes in FL we get the forward fragment FF .
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ ∃z hasChld(y , z) ∧ female(z)

In FF :
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ ∃z hasChld(y , z) ∧ female(z)

In FF :
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ ∃z hasChld(y , z) ∧ female(z)

In FF :
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ ∃z hasChld(y , z) ∧ female(z)

In FF :
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”

grf-wth-gdtrs v ∃hasChld.∃hasChld.female

In GF :
∀x grf-wth-gdtrs(x)→ ∃y hasChld(x , y) ∧ ∃z hasChld(y , z) ∧ female(z)

In FF :
∀x1 grf-wth-gdtrs(x1)→ ∃x2 hasChld(x1, x2) ∧ ∃x3 hasChld(x2, x3) ∧ female(x3)

Note that the Forward Guarded Fragment FGF := GF∩FF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.

• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.
ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).

ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).

ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)

ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸
not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
• New, arguably elegant logic FGF over relational, equality-free signatures.
• FGF cannot express “bad guys”: transitivity, self-loops, nominals and inverses.

ϕtr(R) = ∀x1∀x2∀x3 R(x1, x2) ∧ R(x2, x3)→ R(x1, x3).
ϕloop(R)(x1) = R(x1, x1).
ϕinv(S)=R := ∀x1x2S(x1, x2)↔ R(x2, x1)
ϕunique(A) := ∀x1x2 A(x1) ∧ A(x2)︸ ︷︷ ︸

not guarded!

→ x1=x2

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

Two main ingredients: forward-types and HAFs

Definition (Forward type)
A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6 / 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6 / 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6 / 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)

A (Σ, n)-forward type is a conjunction of atoms with n free-variables ~x1...n,
which for every relational symbol R ∈ Σ of arity ` = ar(R) ≤ n and every
index 1 ≤ i ≤ n+1−` contains either R(~xi ...i+`−1) or ¬R(~xi ...i+`−1).

Lemma
The number of different (Σ, n)-types is ≤ 2|Σ|·n2.
The number of conjuncts in each (Σ, n)-type is ≤ |Σ| · n

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6 / 8

Two main ingredients: forward-types and HAFs

Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA’21)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7 / 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA’21)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7 / 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA’21)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7 / 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA’21)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7 / 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but
other elements are connected in the level-by-level order.

Lemma
Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA’21)
Knowledge-base SAT for FGF is ExpTime-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7 / 8

Conclusions

Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.

3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG

4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

5. Forward TGDs (with Piotr Nalewaja).
Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

Conclusions
Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is ExpTime-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF + I/O/Q.
3. Study FGF+µ or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Thanks for attention!
Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8 / 8

