Exploiting forwardness: Satisfiability and Query Entailment in

Forward Guarded Fragment

May 17, 2021, JELIA 2021

Bartosz “Bart” Bednarczyk

TU DRESDEN & UNIVERSITY OF WROCLAW

TECHNISCHE |
UNIVERSITAT gﬁ@ Uniwersytet
DRESDEN ~

%) Wroctawski

= SENCE W
D e c I G U I European Research Council
Established by the European Commission

Our motivation: what features make CQ answering hard for ALC?

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent /

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).hast

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).hast

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]
As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]

2. Some of them increase the complexity exponentially:

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?
1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]
As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent */;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

more: inverses [Lutz'07], self-loops [B., Rudolph’21 Submitted.]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother C hasParent '/;ar C (= 4).ha3Pm

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

As well as with regular expr, fixed points, (safe) role combination [B.21, in prep.]
2. Some of them increase the complexity exponentially:

E.g. transitivity [Eiter et al.09], nominals (a.k.a. constants) [Ngo et al.'16]

more: inverses [Lutz'07], self-loops [B., Rudolph’21 Submitted.]

What makes ALC easy, but ALCZ and the others hard?

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
) udolph'20]
ation [B.21, in prep.]

hasMother C hasPa

Also with arithmetic a
As well as with regular

2. Some of them incr
/% [Ngo et al’'16]

A AN

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
) udolph'20]
ation [B.21, in prep.]

hasMother C hasPa

Also with arithmetic a
As well as with regular

2. Some of them incr
/% [Ngo et al’'16]

A AN

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Can we find a higher-arity version of ALC with ExpTime querying?

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

ng hard for ALC?
'+Q [Lutz'08]

Our motivation:

1. Some of them beh

Part Wheel
udolph'20]
ation [B.21, in prep.]

hasMother C hasPa
Also with arithmetic a
As well as with regular

2. Some of them incr
[Ngo et al’'16]

A A

What makes ALC easy, but ALCZ and the others hard?

Answer: Forward models!

E.g. transitivity [Eiter

more: inverses [Lutz'0

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! FGF [B. JELIA’21, This talk!]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 1/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers

Ax artst(x) AVy (adm(x,y) — bkpr(y))

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires

Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))
Theorem (Gradel 1999)
The satisfiability problem for GF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
o Jy a(X, y)\p(X,y),Vy a(X, ¥)—p(X,y) — guard must cover free variables of .
Example 1. Some artist admires only beekeepers
dx artst(x) AVy (adm(x,y) — bkpr(y))
Example 2. Every artist envies every bekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]
Coexample 3. Every artist admires every beekeeper
Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))
Theorem (Gradel 1999)
The satisfiability problem for GF is 2EXPTIME-complete.

Theorem (Barany et al. 2013)

Conjunctive query entailment problem for GF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 2/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student

Vx1(lect(xy) — —3xo(prof{x) A Vxs(stud(x3) — intro(x1, x2, x3))))

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)

Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

e The fluted fragment of FO is obtained by keeping the variables ordered.

e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor

Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))

Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)

Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.

If we replace suffices by infixes in FL we get the forward fragment FF.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
e The fluted fragment of FO is obtained by keeping the variables ordered.
e |n atoms we can use only suffixes of the sequences of already quantified variables.
Example 1. No student admires every professor
Vxq(stud(xy) — —Vxo(prof{x,) — admires(xy, x2)))
Example 2. No lecturer introduces any professor to every student
Vxi (lect(x1) — —3xa(profixe) A Vxs(stud(xs) — intro(xy, x2, x3))))
Coexample 1. Vxyr(xy, x1)
Coexample 2. Vx1Vxaor(x1, %) — s(xo, x1)
Coexample 3. Vx1VxoVx3r(x1, x2) A r(xz, x3) — r(xi, x3)
Theorem (Pratt-Hartman et al. 2016)
The satisfiability problem for FL is TOWER-complete.
If we replace suffices by infixes in FL we get the forward fragment FF.
Lemma (B. 2021)
FF is reducible to FL in polynomial time.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 3/8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In GF:
Vx grf-wth-gdtrs(x) — Jy hasChld(x, y) A 3z hasChld(y, z) A female(z)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In GF:
Vx grf-wth-gdtrs(x) — Jy hasChld(x, y) A 3z hasChld(y, z) A female(z)

In FF:
Vx; grf-wth-gdtrs(x;) — Ix hasChld(xy, xp) A dx3 hasChld(xz, x3) A female(xs)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4/ 8

Two nice logics: GF [Andreka et al. 1998] and 7L [Quine 1969]
Both GF and FF capture ALC, e.g.: “Grandfathers with granddaughters”
grf-wth-gdtrs C JhasChld.dhasChld.female

In GF:
Vx grf-wth-gdtrs(x) — Jy hasChld(x, y) A 3z hasChld(y, z) A female(z)

In FF:
Vx; grf-wth-gdtrs(x;) — Ix hasChld(xy, xp) A dx3 hasChld(xz, x3) A female(xs)

Note that the Forward Guarded Fragment FGF := GFNFF also captures ALC.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 4/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results

e New, arguably elegant logic FGF over relational, equality-free signatures.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.

e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.

thr(R) = \V/X1\V/X2\V/X3 R(Xl, X2) YA\ R(XQ, X3) — R(Xl, X3).

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys': transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 X0 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 X0 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete.

Harvesting from the results of Gradel and Barany et al:

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

The Forward Guarded Fragment FGF [B., JELIA 2021]: Our results
e New, arguably elegant logic FGF over relational, equality-free signatures.
e FGF cannot express "bad guys”: transitivity, self-loops, nominals and inverses.
Or(R) = Vx1VxVx3 R(x1, x0) A R(x2, x3) — R(x1,x3).
Sﬁloop(R)(Xl) = R(x1, x1).
Pinv(S)=R = VX105(x1, x2) > R(x2, x1)

Punique(A) = VX1 A(Xl) A\ A(X2) —7 X1=Xp

not guarded!

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete.

Harvesting from the results of Gradel and Barany et al:

Corollary
Data complexity of KB SAT is NP-compl and coNP-compl for querying.
FGF has FMP and is finitely-controllable.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5/ 8

Two main ingredients: forward-types and HAFs

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6/ 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6/ 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Blue Bi, Red R, Green ¢

R -
’5/_\-‘.3-’““‘&“*&.3/_&\&%

({R. G,,EDE. é">-¥°fmxol P :;._/agwgcq

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6/ 8

Two main ingredients: forward-types and HAFs
Definition (Forward type)
A (X, n)-forward type is a conjunction of atoms with n free-variables xj_,,
which for every relational symbol R € ¥ of arity / = ar(R) < n and every

index 1 </ < n+1—/ contains either R(X;._j1s1) or =R(X; i1v-1)-

Blue Bi, Red R, Green ¢
B R '\B’ -I‘R-\ ‘B R 'B

({R. G,,EDE. é">-¥°fmxol P :;._/agwgcq

Lemma
The number of different (X, n)-types is < 2/,

The number of conjuncts in each (X, n)-type is < |X| - n

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 6/ 8

Two main ingredients: forward-types and HAFs

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7/ 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7/ 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7/ 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Lemma

Every satisfiable FGF knowledge base has a HAF (counter)model.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7/ 8

Two main ingredients: forward-types and HAFs
Definition (Higher-arity forests (HAFs))
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Lemma

Every satisfiable FGF knowledge base has a HAF (counter)model.

Theorem (B., JELIA'21)
Knowledge-base SAT for FGF is EXPTIME-complete.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 7/ 8

Conclusions

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions

Forward GF = formulae guarded but kept forward

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.

i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski

Ongoing work with Reijo Jaakkola, University of Tampere

2. Study FGF +Z/0/0Q.

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski
Ongoing work with Reijo Jaakkola, University of Tampere
2. Study FGF +Z/0/0Q.
3. Study FGF+pu or FGF+S. Seem to behave nicer than GF+TG

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski
Ongoing work with Reijo Jaakkola, University of Tampere
2. Study FGF +Z/0/0Q.
3. Study FGF+pu or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?
1. Understand model theory of Ordered /Fluted /Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems a la tos-Tarski
Ongoing work with Reijo Jaakkola, University of Tampere
2. Study FGF +Z/0/0Q.
3. Study FGF+pu or FGF+S. Seem to behave nicer than GF+TG
4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
5. Forward TGDs (with Piotr Nalewaja).

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

Conclusions
Forward GF = formulae guarded but kept forward
Theorem (B., JELIA 2021)
Knowledge-base SAT and CQ entailment for FGF is EXPTIME-complete,
also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

research?
ward Fragment of FQO.
ervation Theorems a la tos-Tarski

rsity of Tampere

icer than GF+TG
nt proofs (with Tim Lyon).

Thanks for attention!

Bartosz “Bart” Bednarczyk Exploiting forwardness: Sat and Querying in FGF 8/ 8

