Worst-Case Optimal Querying of Very Expressive Description Logics with Path Expressions and Succinct Counting

Bartosz Bednarczyk & Sebastian Rudolph
firstname.lastname@tu-dresden.de

Technische Universität Dresden and University of Wrocław

IJCAI 2019
Macau, August 15th, 2019
Running example (ZOIQ KB)

Database

Knowledge

\[\text{HasParent} \ (\text{Heracles, Zeus})\]
\[\text{HasParent} \ (\text{Perseus, Zeus})\]
\[\text{male} \ (\text{Zeus})\]
\[\text{deity} \ (\text{Zeus})\]
\[\text{mortal} \ (\text{Alcmene})\]
Running example (ZOIQ KB)

Database

- **HasParent** (Heracles, Zeus)
- **HasParent** (Perseus, Zeus)
 - **male** (Zeus)
- **deity** (Zeus)
- **mortal** (Alcmene)

Knowledge

- **mortal** ⊑ ¬**deity**
- **⊤** ⊑ ∃**HasFather.male** ∩ ∃**HasMother.female**
- **HasParent** ≡ **HasMother** ∪ **HasFather**
- ∀**HasParent.mortal** ⊑ **mortal**
- **deity** ⊑ ∀**HasParent**.**deity**
Positive 2-Way Regular Path Query

$$\exists x, y, z \ (\text{HasParent}^* \circ \text{HasParent}^-^*)(x, y) \land \text{HasParent}(z, x) \land \text{HasParent}(z, y)$$

\(x \text{ and } y \) are relatives with a common children \(z\)
Positive 2-Way Regular Path Query

\[\exists x, y, z \ (\text{HasParent}^* \circ \text{HasParent}^*)(x, y) \land \text{HasParent}(z, x) \land \text{HasParent}(z, y) \]

\(x \) and \(y \) are relatives with a common children \(z \)

An example match \(\pi \) in a model \(\mathcal{I} \):

\[\pi(x) = \text{Amphitrite}^\mathcal{I} \quad \pi(y) = \text{Poseidon}^\mathcal{I} \quad \pi(z) = \text{Triton}^\mathcal{I} \]
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon,
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: ⊤ ⊑ ∃HasFather.male

Even more expressive logics: ZIQ, ZOQ and ZOI.
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: ⊤ ⊆ ∃HasFather.male
- Boolean role combinations b: HasParent ≡ HasMom ∪ HasDad
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: ⊤ ⊑ ∃HasFather.male
- Boolean role combinations b: HasParent ≡ HasMom ∪ HasDad
- Regular expressions reg: Relatives ≡ HasParent* ◦ HasParent−*

An example logic employing all these features is called \(\mathcal{Z} \).
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: ⊤ ⊑ ∃HasFather.male
- Boolean role combinations b: HasParent ≡ HasMom ∪ HasDad
- Regular expressions reg: Relatives ≡ HasParent* ∘ HasParent−−

An example logic employing all these features is called Z.

- Inverses I: HasChildren ≡ HasParent−
Important logical features

- Unary concepts: male, diety, \(\neg \) mortal + a little more
- Simple roles: HasSon, Quantifiers: \(\top \subseteq \exists \text{HasFather.male} \)
- Boolean role combinations \(b \): HasParent \(\equiv \) HasMom \(\cup \) HasDad
- Regular expressions \(\text{reg} \): Relatives \(\equiv \) HasParent\(^*\) \(\circ \) HasParent\(^{-*}\)

An example logic employing all these features is called \(\mathcal{Z} \).

- Inverses \(\mathcal{I} \): HasChildren \(\equiv \) HasParent\(^-\)
- Nominals (constants) \(\mathcal{O} \): \{Zeus\}
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: \(\top \sqsubseteq \exists \text{HasFather}.\text{male} \)
- Boolean role combinations \(b \): HasParent \(\equiv \) HasMom \(\cup \) HasDad
- Regular expressions \(\text{reg} \): Relatives \(\equiv \) HasParent* \circ \) HasParent**

An example logic employing all these features is called \(\mathcal{Z} \).

- Inverses \(\mathcal{I} \): HasChildren \(\equiv \) HasParent\(^{-}\)
- Nominals (constants) \(\mathcal{O} \): \{Zeus\}
- Counting \(\mathcal{Q} \): \{Zeus\} \(\sqsubseteq (\geq 100 \text{HasChildren}).\top \)
Important logical features

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: \(\top \sqsubseteq \exists \text{HasFather.male} \)
- Boolean role combinations \(b: \text{HasParent} \equiv \text{HasMom} \cup \text{HasDad} \)
- Regular expressions \(\text{reg}: \text{Relatives} \equiv \text{HasParent}^* \circ \text{HasParent}^- \)

An example logic employing all these features is called \(\mathcal{Z} \).

- Inverses \(I: \text{HasChildren} \equiv \text{HasParent}^- \)
- Nominals (constants) \(O: \{ \text{Zeus} \} \)
- Counting \(Q: \{ \text{Zeus} \} \sqsubseteq (\geq 100 \text{HasChildren}). \top \)

Extensions of \(\mathcal{Z} \)

Even more expressive logics: \(\mathcal{Z}IQ, \mathcal{ZOQ} \) and \(\mathcal{ZOI} \)
Quasi-forest model property (QFMP)
Quasi-forest model property (QFMP)

Logics \mathcal{ZIQ}, \mathcal{ZOQ} and \mathcal{ZOI} enjoy QFMP. SAT "only" ExpTime-complete (with bin encoding of \mathcal{Q}).
Querying \(\mathcal{Z} \) with P2RPQs (existing results)

P2RPQ entailment for \(\mathcal{Z} \) family [Calvanese et al, IJCAI’09]

Testing P2RPQ entailment for \(\mathcal{ZI}, \mathcal{ZO}, \mathcal{ZO} \) can be done in 3ExpTime (2ExpTime-c. under unary encoding).
Querying \mathcal{Z} with P2RPQs (existing results)

P2RPQ entailment for \mathcal{Z} family [Calvanese et al, IJCAI’09]

Testing P2RPQ entailment for \mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI} can be done in 3ExpTime (2ExpTime-c. under unary encoding).

- Quite complicated...
- Heavy machinery on automata theory...
Querying \mathcal{Z} with P2RPQs (our results)

P2RPQ entailment for \mathcal{Z} family [Calvanese et al, IJCAI’09]

Testing P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ can be done in 3ExpTime (2ExpTime-c. under unary encoding).
Querying \mathcal{Z} with P2RPQs (our results)

Testing P2RPQ entailment for $\mathcal{Z}_{IQ}, \mathcal{Z}_{OQ}, \mathcal{Z}_{OI}$ can be done in 3ExpTime (2ExpTime-c. under unary encoding).

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for $\mathcal{Z}_{IQ}, \mathcal{Z}_{OQ}, \mathcal{Z}_{OI}$ is 2ExpTime-c, even under binary encoding. Moreover once the number of atoms in the query is bounded, entailment is in ExpTime.

Reduction to satisfiability (works under binary encoding)

P2RPQ version of so-called “rolling-up” technique used for CQs

Match calculus
Querying \(\mathcal{Z} \) with P2RPQs (our results)

- P2RPQ entailment for \(\mathcal{Z} \) family [Calvanese et al, IJCAI’09]

 Testing P2RPQ entailment for \(\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI} \) can be done in 3ExpTime (2ExpTime-c. under unary encoding).

- P2RPQ entailment for \(\mathcal{Z} \) family [this paper!]

 P2RPQ entailment for \(\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI} \) is 2ExpTime-c, even under binary encoding. Moreover once the number of atoms in the query is bounded, entailment is in ExpTime.

- Reduction to satisfiability (works under binary enc)
- P2RPQ version of so-called ”rolling-up” technique used for CQs
- Simulate automata on quasi-forest-models = Match calculus
Querying \mathcal{Z} with P2RPQs (our results)

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for \mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI} is 2ExpTime-c.
Querying \mathcal{Z} with P2RPQs (our results)

- P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ is 2ExpTime-c.

- For simplicity we assume that the input query q is C2RPQ
Querying \mathcal{Z} with P2RPQs (our results)

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for $\mathcal{ZI}_Q, \mathcal{ZO}_Q, \mathcal{ZO}_I$ is 2ExpTime-c.

- For simplicity we assume that the input query q is C2RPQ
- q can be represented as a set of NFAs without ε-transitions
Querying \mathcal{Z} with P2RPQs (our results)

- For simplicity we assume that the input query q is C2RPQ
- q can be represented as a set of NFAs without ε-transitions
- We annotate models \mathcal{I} with Q_M predicates (rolling-up):
 - Q_M indicate that there is a match M in \mathcal{I}
Querying \(\mathcal{Z} \) with P2RPQs (our results)

- **P2RPQ entailment for \(\mathcal{Z} \) family [this paper!]**

- P2RPQ entailment for \(\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI} \) is 2ExpTime-c.

- For simplicity we assume that the input query \(q \) is C2RPQ

- \(q \) can be represented as a set of NFAs without \(\varepsilon \)-transitions

- We annotate models \(\mathcal{I} \) with \(Q_M \) predicates (rolling-up):
 - \(Q_M \) indicate that there is a match \(M \) in \(\mathcal{I} \)
 - basically we simulate automaton on quasi-forest models.

\[
\begin{align*}
\mathcal{K} & \xrightarrow{\text{algorithm}} \mathcal{K} \\
\mathcal{K} & \xrightarrow{\text{poly-size}} \mathcal{K} + \mathcal{K}_q + Q_q \sqsubseteq \bot \\
\end{align*}
\]

Generated with match calculus
Querying \mathcal{Z} with P2RPQs (our results)

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ is 2ExpTime-c.

\[\mathcal{K} + \mathcal{K}_q + Q_q \sqsubseteq \perp \]

\[\mathcal{K}_{\neg q} \]

- $\mathcal{K} \models q$ iff $\mathcal{K}_{\neg q}$ is unsatisfiable
Querying \mathcal{Z} with P2RPQs (our results)

- P2RPQ entailment for \mathcal{Z} family [this paper!]
- P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ is 2ExpTime-c.

\[\mathcal{K} \quad \square \quad \mathcal{K}_q \quad \square \quad Q_q \subseteq \perp \]

\(\mathcal{K}_{\neg q}\)

- \(\mathcal{K} \models q\) iff \(\mathcal{K}_{\neg q}\) is unsatisfiable
- Obtained KB \(\mathcal{K}_{\neg q}\) is only exp in \(|q|\) and poly in \(|\mathcal{K}|\)
Querying \(\mathcal{Z} \) with P2RPQs (our results)

P2RPQ entailment for \(\mathcal{Z} \) family [this paper!]

P2RPQ entailment for \(\mathcal{ZI}_Q, \mathcal{ZO}_Q, \mathcal{ZO}_I \) is 2ExpTime-c.

\[
\begin{align*}
\mathcal{K} & \quad \text{poly-size} \\
\mathcal{K}_q & \quad \text{exp-size} \\
\mathcal{Q}_q \sqsubseteq \bot & \quad \text{poly-size}
\end{align*}
\]

\[\mathcal{K}_{\neg q}\]

- \(\mathcal{K} \models q \) iff \(\mathcal{K}_{\neg q} \) is unsatisfiable
- Obtained KB \(\mathcal{K}_{\neg q} \) is only exp in \(|q|\) and poly in \(|\mathcal{K}|\)
- Testing unsatisfiability can be done in ExpTime w.r.t \(|\mathcal{K}_{\neg q}|\)
Querying \mathcal{Z} with P2RPQs (our results)

- **P2RPQ entailment for \mathcal{Z} family [this paper!]**
- P2RPQ entailment for $\mathcal{ZI}Q, \mathcal{ZO}Q, \mathcal{ZO}I$ is 2ExpTime-c.

\[\mathcal{K} \sqcup \mathcal{K}_q \sqcup Q_q \sqsubseteq \bot\]

- $\mathcal{K} \models q$ iff $\mathcal{K}_{\neg q}$ is unsatisfiable
- Obtained KB $\mathcal{K}_{\neg q}$ is only exp in $|q|$ and poly in $|\mathcal{K}|$
- Testing unsatisfiability can be done in ExpTime w.r.t. $|\mathcal{K}_{\neg q}|$
- Thus in 2ExpTime w.r.t. $|\mathcal{K}| + |q|$
Applications to other logics

We presented a reduction form \mathcal{GC}^2 to \mathcal{ZIQ}, hence we conclude:

Positive regular path queries in \mathcal{GC}^2

P2RPQ entailment for \mathcal{GC}^2 is 2ExpTime-complete.
Applications to other logics

We presented a reduction form \mathcal{GC}^2 to \mathcal{ZIQ}, hence we conclude:

Positive regular path queries in \mathcal{GC}^2

P2RPQ entailment for \mathcal{GC}^2 is 2ExpTime-complete.

By reusing exponential reduction from \mathcal{SR} to \mathcal{Z}:

Positive regular path queries in \mathcal{SR} family

P2RPQ entailment for $\mathcal{SR}(\mathcal{OI}, \mathcal{IQ}, \mathcal{OQ})$ is in 3ExpTime.
Applications to query containment

Testing query containment $\mathcal{K} \models q \subseteq q'$ is:
in \text{2ExpTime} for:
- \mathcal{K} in \mathcal{ZOQ} or \mathcal{ZOI} and $q, q' \in \text{P2RPQ}$
- \mathcal{K} in \mathcal{ZIQ} and $q \in \text{P2RPQ}$, $q' \in \text{CQ}$
and in \text{3ExpTime} for:
- \mathcal{K} in \mathcal{SROQ} or \mathcal{SROI} and $q, q' \in \text{P2RPQ}$
- \mathcal{K} in \mathcal{SRIQ} and $q \in \text{P2RPQ}$, $q' \in \text{CQ}$
Applications to query containment

Query containment

Testing query containment $\mathcal{K} \models q \subseteq q'$ is:
in 2ExpTime for:
- \mathcal{K} in \mathcal{ZOQ} or \mathcal{ZOI} and $q, q' \in \text{P2RPQ}$
- \mathcal{K} in \mathcal{ZIQ} and $q \in \text{P2RPQ}$, $q' \in \text{CQ}$
and in 3ExpTime for:
- \mathcal{K} in \mathcal{SROQ} or \mathcal{SROI} and $q, q' \in \text{P2RPQ}$
- \mathcal{K} in \mathcal{SRIQ} and $q \in \text{P2RPQ}$, $q' \in \text{CQ}$

Moreover once the number of the atoms from the query is bounded complexities of each problem drops by one exponential.
Conclusions and open problems

Our results

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c +
P2RPQ entailment for $SRIQ, SROQ, SROI$ in 3Exp +
P2RPQ containment in 2ExpTime +
One exp less for all problems when $\#\text{atoms}(q) \leq \text{Const.}$

Open problems
Conclusions and open problems

Our results

- P2RPQ entailment for $\mathcal{ZI}Q$, $\mathcal{ZO}Q$, $\mathcal{ZO}I$ is 2ExpTime-c +
- P2RPQ entailment for $\mathcal{SRI}Q, \mathcal{SRO}Q, \mathcal{SROI}$ in 3Exp +
- P2RPQ containment in 2ExpTime +
- One exp less for all problems when $\# \text{atoms}(q) \leq \text{Const.}$

Open problems

- Data complexity?
- Finite query entailment?
- Sat of $\mathcal{ZO}I Q$?
Conclusions and open problems

Our results

P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ is $2\text{ExpTime-c} +$
P2RPQ entailment for $\mathcal{SRIQ}, \mathcal{SROQ}, \mathcal{SROI}$ in $3\text{Exp} +$
P2RPQ containment in $2\text{ExpTime} +$
One exp less for all problems when $\#\text{atoms}(q) \leq \text{Const.}$

Open problems

- Data complexity?
- Finite query entailment?
- Sat of \mathcal{ZOIQ}?