Modulo Counting on Words and Trees

(joint work with Witold Charatonik)

école
normale
supérieure
paris—saclay

~,

X\ Uniwersytet
%H@ Wroctawski

Bartosz Bednarczyk

bartosz.bednarczyk@ens-paris-saclay.fr

Ecole normale supérieure Paris-Saclay
and University of Wroctaw

FSTTCS 2017
Kanpur, December 13, 2017


bartosz.bednarczyk@ens-paris-saclay.fr

Agenda

Classical results on F©? and related logics
Logics on restricted classes of structures (words and trees)

The main results of the paper

0 namely the exact complexity of nice family of tree logics
O able to handle modulo constraints (like parity)

o with relatively small complexity blowup

Proof ideas

® QOur current research and open problems
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Facts about SAT and F©? on arbitrary structures
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= Models = purely relational structures, no constants, no functions
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Facts about SAT and F©? on arbitrary structures

= We are interested in finite satisfiability problems
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= Some classical results:

FO undecidable (Church, Turing; 1930s)

FO® undecidable (Kahr, Moore, Wang; 1959)

FO? decidable (Mortimer; 1975)

FO? enjoys exponential model property (Gradel, Kolaitis, Vardi;
1997) - NEXPTIME-completeness

o Connection between FO? and modal, temporal, description logics;
O many applications in verification and databases

Example formula:

from each element there exists a path of length 3

O

o o o
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Facts about SAT and F©? on arbitrary structures

= We are interested in finite satisfiability problems

= Models = purely relational structures, no constants, no functions
= Some classical results:

FO undecidable (Church, Turing; 1930s)

FO® undecidable (Kahr, Moore, Wang; 1959)

FO? decidable (Mortimer; 1975)

FO? enjoys exponential model property (Gradel, Kolaitis, Vardi;
1997) - NEXPTIME-completeness

o Connection between FO? and modal, temporal, description logics;
O many applications in verification and databases

Example formula:

from each element there exists a path of length 3

O

o o o

Vx3y (E(x,y) A 3x (E(y,x) A3y E(x,Y)))

nggplusion: F©? decidable, but limited in terms of expressivity.



Logics on trees

5/33



Tree structures

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

6/33



Tree structures

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

m QOrdered vs Unordered trees

6/33



Introduction Tree structures Our contribution Why modulo?

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

m QOrdered vs Unordered trees
m Ranked vs Unranked trees

6/33

Upper bound



Introduction Tree structures Our contribution Why modulo?

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

m QOrdered vs Unordered trees
m Ranked vs Unranked trees
m Finite vs Infinite trees

6/33

Upper bound



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

m QOrdered vs Unordered trees
Ranked vs Unranked trees

Finite vs Infinite trees
With unary alphabet restriction (UAR) or without UAR
O precisely one unary predicate holds at each node

6/33

Concl



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

m QOrdered vs Unordered trees
Ranked vs Unranked trees

Finite vs Infinite trees
With unary alphabet restriction (UAR) or without UAR
O precisely one unary predicate holds at each node

We will focus on Finite, Ordered, Unranked Trees, where multiple
predicates can hold at one node (without UAR).
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Tree structures

Signature 7 = 79 U Thay

® 79 —unary symbols (usually P, Q, etc.)
® 7,5, — Navigational binary symbols with fixed interpretation

O words: < (order over positions), +1 (it's induced successor)
O unordered trees: | (child), |, (descendant, TC of |)
0 ordered trees: |, |, — (next sibling), —* (TC of —)

A word:

P,Q P Q P P,Q
o o)
a b c d e f g
Anunordered tree: O P An ordered tree: QP
K O ﬂ‘j\o K O AQ
P,Q O (@] o (\DA P,Q O——0 O—0O0—0
P,.Q O o P,Q O——0

8/33




Tree structures

Complexity results

= FO is TOWER-complete, even for FO2 (Stockmeyer; 1974).

9/33



Tree structures Our contribution

Complexity results

= FO is TOWER-complete, even for FO2 (Stockmeyer; 1974).
= FO?[<,+1] on finite words

0 FO?is NExPTIME-complete (Etessami et al, LICS 1997)
0 Equally expressive to Unary Temporal Logic
0 FO?+3<k4132k stjll in NEXPTIME (Charatonik et al, CSL 2015)

9/33



Introduction Tree structures Our contribution Why modulo? ower bound Upper bound Concl

Complexity results

= FO is TOWER-complete, even for FO2 (Stockmeyer; 1974).
= FO?[<, +1] on finite words

0 FO?is NExPTIME-complete (Etessami et al, LICS 1997)

0 Equally expressive to Unary Temporal Logic

0 FO?+3<k4132k stjll in NEXPTIME (Charatonik et al, CSL 2015)
= FO?[|,|,,—, —"] on finite trees

O FO? on trees is ExPSPACE-complete (Benaim et al, ICALP 2013).
o Equally expressive to Navigational XPath (Marx et al, 2004).
0 FO?+35k4132K still in EXPSPACE (Bednarczyk et al, CSL 2017)
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2-EXPTIME

EXPSPACE

FOP[L.], FOP[ly by, =, =]

NEXPTIME
FO?[<, +1]

FO?|
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Our contribution

Our settings

We work on extensions of FO?[, ].,—,—"] and FO?[<, +1].

Logics with modulo

FOI%/[OD — f(r)Z + 3:k(m0d 1)

for arbitrary natural numbers k, | written in binary
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Our contribution

FOZ2,, Oon words
An alternative proof of FO%op[<, +1] EXPSPACE-upper bound.
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Our contribution

FOZ2,, Oon words
An alternative proof of FO%op[<, +1] EXPSPACE-upper bound.

Theorem (FO2,,, on trees - upper bound)
Membership of FO%op[l, |+, —, =] to 2-EXPTIME.

Theorem (F0Z,,, on trees - lower bound)
2-EXPTIME-hardness for FO%op[l, 1.].
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The general idea of counting quantifiers in logic

m Goal: increase expressiveness by adding an ability to count
o Counting quantifiers 32k, 3<k
0 Graded modalities Ok, O<k, EZK, ASK
= Well-known extensions:
Graded modal logic (over 25 papers!, 1985 - ...)
Graded PDL (Nguyen, CS&P 2015)
Graded strategy logic, CTL, CTL* (Murano et al, 2010-2016)
Graded yi-calculus (Kupferman et al, CADE 2002)
FO? and GF? with counting quantifiers (Pratt-Hartmann 2007)
F©? with counting on words (Charatonik et al, CSL 2015)
F©O? with counting on trees (Bednarczyk et al, CSL 2017)
description logics, dependence logic, epistemic logic
and so on, and so on, and so on...

O

Oo0Oooooaoo
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The general idea of counting quantifiers in logic

m Goal: increase expressiveness by adding an ability to count
o Counting quantifiers 32k, 3<k
0 Graded modalities Ok, O<k, EZK, ASK
= Well-known extensions:
o Graded modal logic (over 25 papers!, 1985 - ...)
0 Graded PDL (Nguyen, CS&P 2015)
O Graded strategy logic, CTL, CTL* (Murano et al, 2010-2016)
O Graded p-calculus (Kupferman et al, CADE 2002)
0 FO? and GF? with counting quantifiers (Pratt-Hartmann 2007)
0 FO? with counting on words (Charatonik et al, CSL 2015)
O FO? with counting on trees (Bednarczyk et al, CSL 2017)
O description logics, dependence logic, epistemic logic
0 and so on, and so on, and so on...
T

his talk: What if we change a little the way we count?
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Why modulo counting matters?

m Parity - not expressible in FO

= Definability is well-studied on words
and trees (Straubing 2008 survey),
but satisfiability was neglected

= Connections with circuit complexity
o PARITY is not in AC°
0 Modular gates + AC° = ACC°
0 Separating NC' from ACC®°

(important open problem!)

16/33
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Why modulo?

Why modulo counting matters?

An example property expressible in FOZ,,,
There is an alarm every 60 seconds.

60 seconds

T
@ @
~— _J

~— e J
60 seconds

/ -_—0

60 seconds

17/33

Vx ((3:°(m°d Oy(y < x)) — a/arm(x))
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Lower bound

How did we prove the lower bound?

= We introduced a new version of tilling games

m 2-EXPTIME-compl by painful reduction from halting for
AEXPSPACE Turning machines

® Encoding of winning strategy of game in our logic
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Tilling game

Prover and Spoiler Rules

® Finite set of puzzles

m Horizontal and vertical constraints

® Goal: Construct a correct tilling of a
board of the size 2" x k
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Tilling game

Constraints Rules

® Finite set of puzzles

®m Horizontal and vertical constraints

® Goal: Construct a correct tilling of a
board of the size 2" x k
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An example: Correct tilling

-

s>

21/33




Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

How modulo counting help us to play this game?

Se__Se S

v

s>
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Finite satisfiability cooking recipe

m Step 1. Transform your formula into a normal form
= Step 2. Design a right notion of a type

o And prove that your notion is "correct” . ..
® Step 3. Show small model property

O Restrict your attention to trees with:

® doubly-exponential degree of every nodes and
® doubly-exponentially long paths

o Do it by cutting out too long | and —-paths
® Step 4. Present an alternating algorithm
O in this case AEXPSPACE (= 2-EXPTIME)

24/33
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Order formulas

ASSumlng Tnav = {\l,, \l,+, —>, —)+}
There are ten of them:

Position ©

©-related with "¢”

011,

0

2=

GTT-%—, 0:+, 9:4—

Op

Ex: 0, (x,¥) = xl.y A =(xly)
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Upper bound

Order formulas

ASSumlng Tnav = {\l,, \l,+, —>, —)+}
There are ten of them:

Position © ©-related with "c”

0 {c}

0, {f,9,h}

01 {a}
011, {J; k.1, m}

0, {d}

O 16} ~

[ - ] (k)

0 {e, i}

Ex: 0, (x,¥) = xl.y A =(xly)
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Upper bound

Atomic 1-types

m 1-type over signature 7 is a color of a single node
= The total number of 1-types is bounded exponentially in |7|
= Example:

Unary symbols 7o = {.,.} = {Green(), Red()}

Possible 1-types ., = {O, Q, .,.}
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Upper bound

A new ingredient - Full type - definition

= Recall that:
0 1-types o, - colors of nodes over signature

An example: o, = {O, Q, .,‘}

O Positions © - how to compare nodes

e = {9=79¢79T79i¢+7QTT+v0—h0<—70:ﬁ+70§:+,97A}
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A new ingredient - Full type - definition

= Recall that:
0 1-types o, - colors of nodes over signature

An example: o, = {O, Q, .,‘}

0 Positions © - how to compare nodes
e = {9=79¢’9T70i¢+7QTT+v0—)50<—79:¢+70§:+,97A}

" (Zy,-..,Z;,)-Full type
O information about the whole tree from local point of view

(Zy,....Z;)-fio(x) = © 5 ¢ = {0,1} x Zj, X ... X Z,
0 The total number of ftps is doubly-exponential.

27/33
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Upper bound

A full type example

o= {o,o,o,o} fip(c) : © — o — {0,1} x Zg

c ® @ O ©o
71222

712 2|2
712 2|2

/
(k) (D (m
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A full type example

o= {0,0,0,.} fio(c) : © — a — {0,1} x Z3

o ® @ O O
—_ | 7] 7] 7] 7
6, | 2 | 7| 7|7
0, | 2 | 2?2 [7?
Oy
0
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A full type example

a={0,0,0,.} fio(c) : © — a — {0,1} x Z3
o ® @ O e

6— 10,00 [ (0,00 [ (0,0) | (1,7)
o, | 7 | ? | 7 | ?
0, | 2 | ? | 7 | 7
Oy

-
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A full type example

= {.,.,.,.} fio(c): © - a — {0,1} x Z3

o ® ® O @
0= 1(0,0) | (0,0) | (0,0) | (1,1)
0, [(1,1) (0,0 [ (12 ](0,0)
? ? ? ?
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A full type example

o= {o,o,o,o} fip(c) : © — o — {0,1} x Zg

® ¢ O o
(0,00 [ (0,0) [ (0,0) | (1,1)
(1,1) [ (0,0) [ (1,2) | (0,0)
(0,0) [ (1,1) [ (1,0) | (0,0)




Upper bound

Pumping lemma and a small model property
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Algorithm.

Procedure 2: Building a subtree rooted at given node

Input: Formula ¢ € FOZop[d, 4", =, —*] in normal form,
full type @ of a starting node, and current level Lvl € N.

1 if not is-p-consistent(a) then reject // See Definition 5
2 if Lvl > () then reject // Path too long
3 if @(6}) is zero then accept // Last node on the path
4 Guess the degree Deg € [1, f(¢)] of a node

5 Guess the full type § of the leftmost child and check if its a valid leftmost son of @

6 OgJ' = 3(0:) // Types of children guessed so far
7 OguJr = 13(9¢) @5(9‘u+) // Types of descendants guessed so far
8 while Deg > 1 do

9 Run in parallel Procedure 2 on (¢, 8,Lvl + 1) // Alternation here
10 Guess a full type 7 of the right brother of 3 and check consistency with &

11 Ogl = 0(9i D 7(9:), 00u+ = 00u+ D 7(94) D 7(9“74-) // Updating obligations
12 B :=7%, Deg := Deg — 1

13 Run in parallel Procedure 2 on (¢, 3, Lvl 4 1) // Last child
14 if 3(9_,) is not zero then reject // Not valid last node on —-path.

15 if @(6,) = Op, and @(f,+) = Oy, , then accept else reject

30/33
EEEEE————————————————————————



Conclusions

31/33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Open problems

Establish the complexity of missing subfragments for 0%,
Guarded fragment restriction, UAR restriction

Develop equivalent version of CTL, CLT*, PDL, and so on.
FO2,0p ON arbitrary structures
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2-ExXPTIME

EXPSPACE

FO?[L.], FO?[L, L., —, —7]

NEXPTIME
FO?[<, +1]

FO?|
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2-EXPTIME
FOZoplds dss —, =]
‘,Foi/IOD[\La 4]

EXPSPACE
7O§40D[Sa +1]
FO?[L.], FO?(L, L, —, —"]

NEXPTIME
FO?[<, +1]

FO?|
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