"Most of" leads to undecidability
Failure of adding frequencies to LTL
FoSSaCS 2021

Bartosz Bednarczyk, Jakub Michaliszyn

TU Dresden & University of Wrocław
What’s the formal verification about?

system:

property:

model-checking algorithm

Always(safe)

yes/no

"Most of" leads to undecidability
Linear-time Temporal Logic (LTL)

atomic propositions: , , ...

boolean combinators: ¬ ', ' _ , ' ^ , ...

temporal modalities: X ' ' ' ' ' "next " ' U ' ' ' ' ' "until " ' ' ' ' ' "eventually " ' ' ' ' ' "always "

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M|= () 8 ⇡ 2 TM. ⇡ |= "true " U ' ' ' ' ' "always " "eventually ".
Linear-time Temporal Logic (LTL)

- atomic propositions: \(\odot, \odot, \ldots \)
Linear-time Temporal Logic (LTL)

- atomic propositions: \(\bigcirc, \bigcirc, \ldots \)

- boolean combinators: \(\neg \phi, \phi \lor \psi, \phi \land \psi, \ldots \)
Linear-time Temporal Logic (LTL)

- atomic propositions: \(\bigcirc, \bigcirc, \ldots \)

- boolean combinators: \(\neg \varphi, \varphi \lor \psi, \varphi \land \psi, \ldots \)

- temporal modalities:

 \[
 \begin{align*}
 X \varphi & \quad \begin{array}{c}
 \text{next } \varphi
 \end{array} \\
 \varphi U \psi & \quad \begin{array}{c}
 \varphi \text{ until } \psi
 \end{array}
 \end{align*}
 \]
Linear-time Temporal Logic (LTL)

- atomic propositions: \circ, \circ, \ldots

- boolean combinators: $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, ...

- temporal modalities:
 - $X \varphi$
 - $\varphi U \psi$
 - $\text{true } U \varphi \equiv F \varphi$
 - $\neg F \neg \varphi \equiv G \varphi$

A Kripke structure satisfies \mathcal{L}_TL if all its infinite executions do:

$M \models \varphi$ if $\forall \pi \in \mathcal{T}_M. \pi \models \varphi$.
Satisfiability and model checking

Two main algorithmic problems

Satisfiability:
Input: a formula \(\phi \) in LTL;
Output: yes if there exists a Kripke structure \(M \) such that \(M \models \phi \); no otherwise.

Model checking:
Input: a formula \(\phi \) in LTL, and a Kripke structure \(M \);
Output: yes if \(M \models \phi \); no otherwise.
Satisfiability and model checking

Two main algorithmic problems

- **Satisfiability:**
 - Input: a formula φ in LTL;
 - Output:
 - **yes** if there exists a Kripke structure M s.t. $M \models \varphi$;
 - **no** otherwise.

- Model checking:
 - Input: a formula φ in LTL, and a Kripke structure M;
 - Output: **yes** if $M \models \varphi$;
 - **no** otherwise.
Satisfiability and model checking

Two main algorithmic problems

- **Satisfiability:**
 - Input: a formula φ in LTL;
 - Output:
 - *yes* if there exists a Kripke structure M s.t. $M \models \varphi$;
 - *no* otherwise.

- **Model checking:**
 - Input: a formula φ in LTL, and a Kripke structure M;
 - Output:
 - *yes* if $M \models \varphi$;
 - *no* otherwise.
LTL: Ups and downs

- Theorem (LTL is PSpace-complete.)
 - Model checking and satisfiability are logspace interreducible.
 - PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties but it can't express quantitative properties!
LTL: Ups and downs

Theorem (LTL is \textit{PSPACE}-complete.)
Theorem *(LTL is PSPACE-complete.)*

- Model checking and satisfiability are logspace interreducible.
LTL: Ups and downs

Theorem (LTL is PSPACE-complete.)

- Model checking and satisfiability are logspace interreducible.
- PSpace upper bound = on-the-fly construction of Buchi automata
LTL: Ups and downs

Theorem (LTL is \textsf{PSPACE}-complete.)

- Model checking and satisfiability are logspace interreducible.
- PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties
Theorem (LTL is PSpace-complete.)

- Model checking and satisfiability are logspace interreducible.
- PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what's wrong with it?
LTL: Ups and downs

Theorem (LTL is PSPACE-complete.)

- Model checking and satisfiability are logspace interreducible.
- PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!
Our goal: Extend LTL with frequency constraints

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14]: long paths makes formulae less true.
- Metric LTL [Koymans’90]: time modelled as a real line
- ULTL [F,P,X,Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]: “Kleene, Rabin, and Scott are available.”

All of them are undecidable!

And the problem seems to be the until operator.
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14]: long paths makes formulae less true.
- Metric LTL [Koymans'90]: time modelled as a real line
- ULTL $[F,P, X, Y]$ with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]: “Kleene, Rabin, and Scott are available”

All of them are undecidable! And the problem seems to be the until operator.
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14]: long paths makes formulae less true.
- Metric LTL [Koymans'90]: time modelled as a real line.
- ULTL [F, P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]: "Kleene, Rabin, and Scott are available".

All of them are undecidable! And the problem seems to be the until operator.
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
Our goal: Extend LTL with frequency constraints

Related works:
- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
Our goal: Extend LTL with frequency constraints

Related works:

• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]:
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]:
 "Kleene, Rabin, and Scott are available"
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]:

11 / 18
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]:

All of them are undecidable!
Our goal: Extend LTL with frequency constraints

Related works:

- Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
- Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
- Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
- Metric LTL [Koymans’90] - time modelled as a real line
- ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
- Availability expressions [Hoenicke et al. 2010]:

All of them are undecidable!

And the problem seems to be the until operator.
Our setting

We allow only for "finally" operator + "most of the previous positions satisfies ϕ" $PM(\phi)$ or "a is the most-frequent-letter in the past" $MFL(a)$.

$w_i = F(\phi) \text{ if } \exists j \geq i \text{ and } w_j = \phi \quad w_i = PM(\phi) \text{ if } \{j < i : w_j = \phi\} \geq i^2 \quad w_i = MFL(\sigma) \text{ if } \forall \tau \in AP, \{j < i : w_j = \sigma\} \geq \{j < i : w_j = \tau\}$
Our setting

We allow only for “finally” F operator.
Our setting

We allow only for “finally” F operator $+$

“most of the previous positions satisfies φ” $\text{PM}(\varphi)$
Our setting

We allow only for “finally” F operator $+$

“most of the previous positions satisfies φ” $PM(\varphi)$

or “a is the most-frequent-letter in the past” $MFL(a)$
Our setting

We allow only for “finally” F operator $+$

“most of the previous positions satisfies φ” $PM(\varphi)$

or “a is the most-frequent-letter in the past” $MFL(a)$

$\forall \tau \in AP, |\{ j < i : w, j | = \tau \}| \geq |\{ j < i : w, j | = \sigma \}|$

$w, i | = F \varphi$ if $\exists j$ such that $|w| > j \geq i$ and $w, j | = \varphi$

$w, i | = PM(\varphi)$ if $|\{ j < i : w, j | = \varphi \}| \geq i$

$w, i | = MFL(\sigma)$ if $\forall \tau \in AP, |\{ j < i : w, j | = \tau \}| \geq |\{ j < i : w, j | = \sigma \}|$

"eventually φ"

"always φ"
Our setting

We allow only for “finally” \(F \) operator +

“most of the previous positions satisfies \(\varphi \)” \(\text{PM}(\varphi) \)

or “\(a \) is the most-frequent-letter in the past” \(\text{MFL}(a) \)

\[\begin{align*}
\varphi & \rightarrow \text{MP} \varphi \rightarrow \text{MFL} \rightarrow \text{MFL} \rightarrow \ldots \\
\varphi & \rightarrow \varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \varphi \rightarrow \ldots
\end{align*} \]

\(F \varphi \) “eventually \(\varphi \)”

\(\neg F \neg \varphi \equiv \text{G} \varphi \) “always \(\varphi \)”

\(\mathfrak{w}, i \models F \varphi \) if \(\exists j \) such that \(|\mathfrak{w}| > j \geq i \) and \(\mathfrak{w}, j \models \varphi \)
Our setting

We allow only for “finally” F operator +

“most of the previous positions satisfies φ” $PM(\varphi)$
or “a is the most-frequent-letter in the past” $MFL(a)$

\[
\begin{align*}
F\varphi & \quad \text{“eventually } \varphi\text{”} \\
\neg F \neg \varphi & \equiv G\varphi \quad \text{“always } \varphi\text{”}
\end{align*}
\]

$w, i \models F\varphi$ if $\exists j$ such that $|w| > j \geq i$ and $w, j \models \varphi$

$w, i \models PM\varphi$ if $|\{j < i : w, j \models \varphi\}| \geq \frac{i}{2}$
Our setting

We allow only for “finally” F operator +

“most of the previous positions satisfies φ” $PM(\varphi)$
or “a is the most-frequent-letter in the past” $MFL(a)$

$w, i \models F \varphi$ if $\exists j$ such that $|w| > j \geq i$ and $w, j \models \varphi$

$w, i \models PM \varphi$ if $|\{j < i: w, j \models \varphi\}| \geq \frac{i}{2}$

$w, i \models MFL \sigma$ if $\forall \tau \in AP. |\{j < i: w, j \models \sigma\}| \geq |\{j < i: w, j \models \tau\}|$
Our results

• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL + PM are decidable.
• FO[<] + Majority quantifier is undecidable.

Our proof technique

We focus on a single modality Half:\[\text{Half } \varphi := \text{PM}(\varphi) \land \text{PM}(\neg \varphi)\]

The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.
Our results

- LTL with F and PM is undecidable.
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of LTL+PM are decidable.
Our results

• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO²[<] + Majority quantifier is undecidable.
Our results

- LTL with \(F \) and \(\text{PM} \) is undecidable.
- LTL with \(F \) and \(\text{MFL} \) is undecidable.
- Some rather uninteresting fragments of \(\text{LTL} + \text{PM} \) are decidable.
- \(\text{FO}^2[<] \) + Majority quantifier is undecidable.

Our proof technique
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of LTL+PM are decidable.
- $FO^2[\prec] +$ Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality Half:
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of LTL+PM are decidable.
- FO²[<] + Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality Half:

 \[\omega, i \models \text{Half} \varphi \text{ if } |\{j < i : \omega, j \models \varphi\}| = \frac{i}{2} \]
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of LTL+PM are decidable.
- FO\(^2[<]\) + Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality Half:

\[\omega, i \models \text{Half} \varphi \text{ if } |\{ j < i : \omega, j \models \varphi \}| = \frac{i}{2} \]

Half \(\varphi \) := PM(\(\varphi \)) \& PM(\(\neg \varphi \))
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of $LTL+PM$ are decidable.
- $FO^2[<] +$ Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality $Half$:

 $$\sigma, i \models \text{Half } \varphi \text{ if } |\{ j < i : \sigma, j \models \varphi \}| = \frac{i}{2}$$

 $Half \varphi := PM(\varphi) \land PM(\neg \varphi)$

- The proof goes via encoding of Minsky’s two counter machines
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of LTL+PM are decidable.
- FO$^2[<]$ + Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality \textbf{Half}:
 \[\mathfrak{w}, i \models \text{Half} \varphi \text{ if } |\{j < i : \mathfrak{w}, j \models \varphi\}| = \frac{i}{2} \]
 \[\text{Half } \varphi := \text{PM}(\varphi) \land \text{PM}(\neg \varphi) \]
- The proof goes via encoding of Minsky's two counter machines
 In the last few minutes we present the main ideas of the encoding.
Shadowy words

Consider an alphabet \{wht, shdw\}.

A word \(w\) is shadowy if it belongs to \((wht \cdot shdw) +\).

Lemma

Shadowy words are LTL-F, Half-definable.

Proof

It suffices to employ the following formulae:

• \(wht \cdot G (wht \leftrightarrow \neg shdw)\)
• \(G (wht \rightarrow F (shdw))\)
• \(G (\varphi_{even} \leftrightarrow wht)\), where \(\varphi_{even} := \text{Half} wht\)
Shadowy words

Consider an alphabet \(\{wht, shdw\} \).
Shadowy words

Consider an alphabet \(\{wht, shdw\} \).

A word \(w \) is shadowy if it belongs to \((wht \cdot shdw)^+ \).
Shadowy words

Consider an alphabet \(\{ \text{wht}, \text{shdw} \} \).

A word \(\omega \) is shadowy if it belongs to \((\text{wht} \cdot \text{shdw})^+\).
Shadowy words

Consider an alphabet \(\{ \text{wht}, \text{shdw} \} \).

A word \(\omega \) is shadowy if it belongs to \((\text{wht} \cdot \text{shdw})^+ \).

Lemma

Shadowy words are \(\text{LTL}_{F, \text{Half}} \)-definable.
Shadowy words

Consider an alphabet \(\{wht, shdw\} \).

A word \(w \) is shadowy if it belongs to \((wht \cdot shdw)^+\).

Lemma

Shadowy words are \(\text{LTL}_{F, \text{Half}} \)-definable.

Proof

It suffices to employ the following formulae:
Shadowy words

Consider an alphabet \(\{wht, shdw\} \).

A word \(w \) is shadowy if it belongs to \((wht \cdot shdw)^+ \).

Lemma

Shadowy words are \(\text{LTL}_{F, \text{Half}} \)-definable.

Proof

It suffices to employ the following formulae:

- \(wht \)
Shadowy words

Consider an alphabet \{wht, shdw\}.

A word \(w\) is shadowy if it belongs to \((wht \cdot shdw)^+\).

Lemma

Shadowy words are \(\mathbb{LTL}_{F,\text{Half}}\)-definable.

Proof

It suffices to employ the following formulae:

- \(wht\)
- \(G (wht \leftrightarrow \neg shdw)\)
Shadowy words

Consider an alphabet \(\{ \text{wht}, \text{shdw} \} \).

A word \(\omega \) is shadowy if it belongs to \((\text{wht} \cdot \text{shdw})^+ \).

Lemma

Shadowy words are \(\text{LTL}_{F,\text{Half}} \)-definable.

Proof

It suffices to employ the following formulae:

- \(\text{wht} \)
- \(\text{G} (\text{wht} \leftrightarrow \neg \text{shdw}) \)
- \(\text{G} (\text{wht} \rightarrow \text{F} (\text{shdw})) \)
Shadowy words

Consider an alphabet \(\{ wht, shdw \} \).

A word \(w \) is shadowy it belongs to \((wht \cdot shdw)^+\)

Lemma

Shadowy words are \(LTL_{F, \text{Half}} \)-definable.

Proof

It suffices to employ the following formulae:

- \(wht \)
- \(G(wht \leftrightarrow \neg shdw) \)
- \(G(wht \rightarrow F(\text{shdw})) \)
- \(G(\varphi_{\text{even}} \leftrightarrow wht) \)
Shadowy words

Consider an alphabet \(\{ \text{wht}, \text{shdw} \} \).

A word \(\omega \) is shadowy if it belongs to \((\text{wht} \cdot \text{shdw})^+ \).

Lemma

Shadowy words are \(\text{LTL}_{F,\text{Half}} \)-definable.

Proof

It suffices to employ the following formulae:

- \(\text{wht} \)
- \(\text{G} (\text{wht} \leftrightarrow \neg \text{shdw}) \)
- \(\text{G} (\text{wht} \rightarrow \text{F} (\text{shdw})) \)
- \(\text{G} (\phi_{\text{even}} \leftrightarrow \text{wht}) \), where \(\phi_{\text{even}} := \text{Half} \text{ wht} \)
Transferring truth predicates

Proof
It suffices to express:
• $(\{ w : 0 \})$: for the last white position p we have:
 $w, p \models \sigma \iff w, p + 1 \models \tilde{\sigma}$.
• all white ps satisfy $(\spadesuit) : \# \text{wht} \land \sigma(w, p) = \# \text{shdw} \land \tilde{\sigma}(w, p)$.
Exercise 3.3. Let σ and $\bar{\sigma}$ be distinct letters from $\text{AP} \setminus \{\text{wht, shdw}\}$. There is an $\text{LTL}_{F,\text{Half}}$ formula $\varphi^{\text{trans}}_{\sigma \sim \bar{\sigma}}$, such that $w \models \varphi^{\text{trans}}_{\sigma \sim \bar{\sigma}}$ iff:

1. w is shadowy,
2. only white (resp., shadow) positions of w can be labelled σ (resp., $\bar{\sigma}$) and
3. for any even position p we have: $w, p \models \sigma \iff w, p+1 \models \bar{\sigma}$.

\begin{center}
\begin{tikzpicture}[node distance = 1cm,>=latex]
 \tikzstyle{every node}=[circle,draw,fill=black!20]
 \node [label=below:$\text{wht} \sigma$] (1) ;
 \node [label=below:$\text{shdw} \bar{\sigma}$, right of=1] (2) ;
 \node [label=below:$\text{wht} \bar{\sigma}$, right of=2] (3) ;
 \node [label=below:$\text{shdw} \bar{\sigma}$, right of=3] (4) ;
 \node [label=below:$\text{wht} \bar{\sigma}$, right of=4] (5) ;
 \node [label=below:$\text{shdw} \bar{\sigma}$, right of=5] (6) ;
 \draw (1) edge (2)
 (2) edge (3)
 (3) edge (4)
 (4) edge (5)
 (5) edge (6);
\end{tikzpicture}
\end{center}
Exercise 3.3. Let σ and $\bar{\sigma}$ be distinct letters from $\text{AP} \setminus \{\text{wht}, \text{shdw}\}$. There is an $\text{LTL}_{F,\text{Half}}$ formula $\varphi^{\text{trans}}_{\sigma \sim \bar{\sigma}}$, such that $w \models \varphi^{\text{trans}}_{\sigma \sim \bar{\sigma}}$ iff:

1. w is shadowy,

2. only white (resp., shadow) positions of w can be labelled σ (resp., $\bar{\sigma}$) and

3. for any even position p we have: $w, p \models \sigma \iff w, p+1 \models \bar{\sigma}$.

![Diagram showing the sequence of white and shadow positions]

Lemma

Transfer formulae $\text{LTL}_{F,\text{Half}}$-definable.
Exercise 3.3. Let σ and $\bar{\sigma}$ be distinct letters from $\text{AP} \setminus \{\text{wht}, \text{shdw}\}$. There is an $\text{LTL}_{F,\text{Half}}$ formula $\varphi_{\sigma \sim \bar{\sigma}}^{\text{trans}}$, such that $w \models \varphi_{\sigma \sim \bar{\sigma}}^{\text{trans}}$ iff:

1. w is shadowy,

2. only white (resp., shadow) positions of w can be labelled σ (resp., $\bar{\sigma}$) and

3. for any even position p we have: $w, p \models \sigma \iff w, p+1 \models \bar{\sigma}$.

Lemma

Transfer formulae $\text{LTL}_{F,\text{Half}}$-definable.

Proof

It suffices to express:
Exercise 3.3. Let \(\sigma \) and \(\tilde{\sigma} \) be distinct letters from \(\text{AP} \setminus \{\text{wht}, \text{shdw}\} \). There is an \(\text{LTL}_{F,\text{Half}} \) formula \(\varphi^{\text{trans}}_{\sigma \sim \tilde{\sigma}} \), such that \(\mathfrak{w} \models \varphi^{\text{trans}}_{\sigma \sim \tilde{\sigma}} \) iff:

1. \(\mathfrak{w} \) is shadowy,
2. only white (resp., shadow) positions of \(\mathfrak{w} \) can be labelled \(\sigma \) (resp., \(\tilde{\sigma} \)) and
3. for any even position \(p \) we have: \(\mathfrak{w}, p \models \sigma \Leftrightarrow \mathfrak{w}, p+1 \models \tilde{\sigma} \).

\[
\begin{array}{cccccc}
\text{wht} & \rightarrow & \text{shdw} & \rightarrow & \text{wht} & \rightarrow & \text{shdw} \\
\sigma & \rightarrow & \tilde{\sigma} & \rightarrow & \sigma & \rightarrow & \tilde{\sigma}
\end{array}
\]

Lemma

Transfer formulae \(\text{LTL}_{F,\text{Half}} \)-definable.

Proof

It suffices to express:

- \((\Diamond)\) : for the last white position \(p \) we have: \(\mathfrak{w}, p \models \sigma \Leftrightarrow \mathfrak{w}, p+1 \models \tilde{\sigma} \).
Exercise 3.3. Let σ and $\tilde{\sigma}$ be distinct letters from $\text{AP} \setminus \{\text{wht, shdw}\}$. There is an $\text{LTL}_{F,\text{Half}}$ formula $\varphi_{\sigma \sim \tilde{\sigma}}^{\text{trans}}$, such that $w \models \varphi_{\sigma \sim \tilde{\sigma}}^{\text{trans}}$ iff:

1. w is shadowy,

2. only white (resp., shadow) positions of w can be labelled σ (resp., $\tilde{\sigma}$) and

3. for any even position p we have: $w, p \models \sigma \iff w, p+1 \models \tilde{\sigma}$.

Lemma

Transfer formulae $\text{LTL}_{F,\text{Half}}$-definable.

Proof

It suffices to express:

- (\diamondsuit): for the last white position p we have: $w, p \models \sigma \iff w, p+1 \models \tilde{\sigma}$.

- all white p satisfy (\heartsuit): $\#_{\text{wht} \land \sigma}^<(w, p) = \#_{\text{shdw} \land \tilde{\sigma}}^<(w, p)$
• (\Diamond): for the last white position p we have: $\mathfrak{w}, p \models \sigma \iff \mathfrak{w}, p+1 \models \tilde{\sigma}$.
(◇) : for the last white position p we have: $w, p \models \sigma \iff w, p + 1 \models \tilde{\sigma}$.

Last position sees only shadows!
• (⋄) : for the last white position \(p \) we have: \(\mathfrak{w}, p \models \sigma \iff \mathfrak{w}, p+1 \models \tilde{\sigma} \).

Last position sees only shadows! \(\varphi_{last} := \mathbf{G}(shdw) \)
• (◇) : for the last white position p we have: $\mathbf{w}, p \models \sigma \iff \mathbf{w}, p+1 \models \tilde{\sigma}$.

Last position sees only shadows! $\varphi_{\text{last}} := \mathbf{G}(\text{shdw})$

Second to last position is white:
(◊) : for the last white position \(p \) we have: \(w, p \models \sigma \iff w, p+1 \models \tilde{\sigma} \).

Last position sees only shadows! \(\varphi_{\text{last}} := G(\text{shdw}) \)

Second to last position is white: \(\text{wht} \ldots \)
• (◊) : for the last white position p we have: $w, p \models \sigma \iff w, p+1 \models \tilde{\sigma}$.

Last position sees only shadows! $\varphi_{\text{last}} := G(\text{shdw})$

Second to last position is white: $wht \ldots$

and sees only the last shadows
(◊) : for the last white position p we have: $w, p \models \sigma \iff w, p+1 \models \tilde{\sigma}$.

Last position sees only shadows! $\varphi_{\text{last}} := G(shdw)$

Second to last position is white: $wht \ldots$

and sees only the last shadows $G(shdw \rightarrow \varphi_{\text{last}})$
• (◊) : for the last white position \(p \) we have: \(\mathbf{w}, p \models \sigma \iff \mathbf{w}, p+1 \models \tilde{\sigma} \).

 Last position sees only shadows! \(\varphi_{\text{last}} := \mathbf{G}(\text{shdw}) \)

 Second to last position is white: \(\text{wht} \ldots \)

 and sees only the last shadows \(\mathbf{G}(\text{shdw} \to \varphi_{\text{last}}) \)

 Hence, take \(\varphi_{\text{sec-to-last}} := \text{wht} \land \mathbf{G}(\text{shdw} \to \varphi_{\text{last}}) \)
• (◇): for the last white position p we have: $w, p \models \sigma \iff w, p+1 \models \tilde{\sigma}$.

Last position sees only shadows! $\varphi_{\text{last}} := G \left(shdw \right)$

Second to last position is white: $wht \ldots$

and sees only the last shadows $G \left(shdw \rightarrow \varphi_{\text{last}} \right)$

Hence, take $\varphi_{\text{sec-to-last}} := wht \land G \left(shdw \rightarrow \varphi_{\text{last}} \right)$

and the formula $F \left(\varphi_{\text{sec-to-last}} \land \pm \sigma \right) \land F \left(\varphi_{\text{last}} \land \pm \tilde{\sigma} \right)$ does the job!
all white p satisfy (♥) : $\#^{\text{wht} \land \sigma}(w, p) = \#^{\text{shd} \land \overline{\sigma}}(w, p)$
• all white p satisfy (\heartsuit): $\#_{\text{wht} \land \sigma}(w, p) = \#_{\text{shdw} \land \bar{\sigma}}(w, p)$

$$\#_{\text{wht} \land \sigma}(w, p) = \#_{\text{shdw} \land \bar{\sigma}}(w, p)$$
• all white \(p \) satisfy (\(\diamond \)) : \(\#_{\text{wht} \land \sigma} (w, p) = \#_{\text{shdw} \land \tilde{\sigma}} (w, p) \)

\[
\#_{\text{wht} \land \sigma} (w, p) = \#_{\text{shdw} \land \tilde{\sigma}} (w, p)
\]

\[
\#_{\text{wht} \land \sigma} (w, p) - \#_{\text{shdw} \land \tilde{\sigma}} (w, p) = 0
\]
• all white p satisfy (♥) : \[\#_{\text{wht} \land \sigma}(w, p) = \#_{\text{shdw} \land \bar{\sigma}}(w, p) \]

\[\#_{\text{wht} \land \sigma}(w, p) - \#_{\text{shdw} \land \bar{\sigma}}(w, p) = 0 \]

\[\#_{\text{wht} \land \sigma}(w, p) + \frac{p}{2} - \#_{\text{shdw} \land \bar{\sigma}}(w, p) = \frac{p}{2} = \text{"Half"} \]
• all white p satisfy (\heartsuit): $\#_{wht \land \sigma}(w, p) = \#_{shdw \land \bar{\sigma}}(w, p)$

$$\#_{wht \land \sigma}(w, p) = \#_{shdw \land \bar{\sigma}}(w, p)$$

$$\#_{wht \land \sigma}(w, p) - \#_{shdw \land \bar{\sigma}}(w, p) = 0$$

$$\#_{wht \land \sigma}(w, p) + \frac{p}{2} - \#_{shdw \land \bar{\sigma}}(w, p) = \frac{p}{2} = "Half"$$

$$\#_{wht \land \sigma}(w, p) + \#_{shdw}(w, p) - \#_{shdw \land \bar{\sigma}}(w, p) = "Half"$$
all white p satisfy (♥):

$$\#_{wht \land \sigma}(w, p) = \#_{shdw \land \bar{\sigma}}(w, p)$$

$$\#_{wht \land \sigma}(w, p) - \#_{shdw \land \bar{\sigma}}(w, p) = 0$$

$$\#_{wht \land \sigma}(w, p) + \frac{p}{2} - \#_{shdw \land \bar{\sigma}}(w, p) = \frac{p}{2} = "Half"$$

$$\#_{wht \land \sigma}(w, p) + \#_{shdw}(w, p) - \#_{shdw \land \bar{\sigma}}(w, p) = "Half"$$

$$\#_{wht \land \sigma}(w, p) + \#_{shdw \land \bar{\sigma}}(w, p) = "Half"$$
• all white p satisfy (\heartsuit): $\#^{\text{wht} \land \sigma}(w, p) = \#^{\text{shdw} \land \bar{\sigma}}(w, p)$

$$\#^{\text{wht} \land \sigma}(w, p) = \#^{\text{shdw} \land \bar{\sigma}}(w, p)$$

$$\#^{\text{wht} \land \sigma}(w, p) - \#^{\text{shdw} \land \bar{\sigma}}(w, p) = 0$$

$$\#^{\text{wht} \land \sigma}(w, p) + \frac{p}{2} - \#^{\text{shdw} \land \bar{\sigma}}(w, p) = \frac{p}{2} = \text{"Half"}$$

$$\#^{\text{wht} \land \sigma}(w, p) + \#^{\text{shdw}}(w, p) - \#^{\text{shdw} \land \bar{\sigma}}(w, p) = \text{"Half"}$$

$$\#^{\text{wht} \land \sigma}(w, p) + \#^{\text{shdw} \land \neg \bar{\sigma}}(w, p) = \text{"Half"}$$

and hence we get a formula $\text{Half}([\text{wht} \land \sigma] \lor [\text{shdw} \land \neg \bar{\sigma}])$
Our results

- LTL with F and PM is undecidable.
- LTL with F and MFL is undecidable.
- Some rather uninteresting fragments of $LTL + PM$ are decidable.
- $FO^2[<] +$ Majority quantifier is undecidable.

Our proof technique

- We focus on a single modality $Half$:

 \[w, i \models Half \varphi \text{ if } |\{j < i : w, j \models \varphi\}| = \frac{i}{2} \]

 \[Half \varphi := PM(\varphi) \land PM(\neg \varphi) \]

- The proof goes via encoding of Minsky’s two counter machines
- We use shadowy words and tricks with $+\frac{P}{2}$ to express equicardinality

Thanks for attention!

Some initial LTL slides by ©Nicolas Markey.