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Running example: Greek mythology ZOIQ knowledge base

Database (ABox) Knowledge (TBox)

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

hasParent(Heracles, Zeus)
Diety(Zeus), Female(Rhea)
Narcissist(Narcissus)

Mortal v ¬Diety
> v ∃hasParent.Male u ∃hasParent.FemaleALC

Narcist v ∃loves.SelfSelf
hasParent ≡ hasMother ∪ hasFatherHb

diety v ∀hasParent∗.dietyreg
{Zeus} v (= 54hasChildren).>O & Q
{Ares} v ∃hasChildren−.{Zeus}O & I

We study the DL ZOIQ a.k.a. ALCHbreg
SelfOIQ.

This work: study of KBSat and CQ Entailment in the finite for fragments of ZOIQ.
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ZOI and ZOQ are FC. So their Fin KBSat is ExpTime-c and Fin PEQ querying is 2ExpTime-c.

Fin PEQ entailment for ALCISelf ⊆ L ⊆ ZIQ can be solved with 2-exp calls to FinKBSat.

Current state of the art?

1. KBSat & CQ/UCQ/PEQ Entailment: ExpTime-c. and 2ExpTime-c. for Z(OI/OQ/IQ)
2. Even KBSat is open for ZOIQ. Notoriously hard!

How about FinKBSat and Finite CQ entailment? Nearly nothing is known!
3. ZOI is known to have the finite model property (FMP). [Calvanese et al, ICDT’16]
4. ALCOIF1/2

reg have FinKBSat decidable in 1/2-NExpTime. [Jung et al, KR’20]
5. [Jung et al, KR’20] claimed ZOIQ to be undecidable but the proof is incorrect. [Per. comm. with Jung]

Our paper: Study of FinKBSat & Fin CQ/UCQ/PEQ Entailment for Z(OI/OQ/IQ).
We say that L is finitely-controllable (FC) iff for all L-KBs K and PEQs q we have K |= q iff K |=fin q.
FC implies FMP (but not vice versa, e.g. S). Just take q = ⊥.

We do not know how to solve FinSat for ZIQ, or even for ALCIQ∗. Sounds very technical. BUT:

FinKBSat for ZIQ is ExpTime-c implies that its Fin PEQ entailment is 2ExpTime-c.

FinPEQEnt is: (a) in 2/3-NExpTime for ALCOIF1/2
reg (b) 2ExpTime-c for ALC ⊆ L ⊆ ALCHbSelfIQ.

Bartosz “Bart” Bednarczyk Querying the Z family with local queries in the finite 2 / 6
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W.l.o.g. we assume that our input K has no ABox and its TBox is of the form:

Proof ideas on FC for ZOI and ZOQ

Idea: take any ZOI/ZOQ-KB K and a PEQ q and a countermodel I |= K, I 6|= q. Construct a finite J .
Normal form for KBs

A ≡ {o}, A ≡ ¬B, A ≡ B t B′, A ≡ (≥ n s).B, A ≡ ∃pA.B, A ≡ ∃s.Self
• s is a simple role, i.e. safe boolean combination of atomic roles
• pA is an automaton role, i.e. (d, e) ∈ pIA if there is a path d e in I accepted by A

Quasi-forest countermodels
W.l.o.g. I is a quasi-forest such that:

• degree of each node is finite
• Every role/concept name 6∈ K is interpreted as ∅
• Witnesses for ex. restr. can be always find below.
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W.l.o.g. I is a quasi-forest such that:

• degree of each node is finite

• Every role/concept name 6∈ K is interpreted as ∅
• Witnesses for ex. restr. can be always find below.
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By finite degree, we know that the set of all downward types DTPI is finite.

Part I: Types

Atomic type of g:

= isomorphism type of I�({g} ∪ NomI)

Downward type of g:

= isomorphism type of I�(Subtree≤|q|I (g) ∪ NomI)

We also distinguish the set of nominal downward types NTPI .
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Part II: Components - How do we create them?

We select any downward type π ∈ DTPI and any g of this type.

Cπ :=

We include all the nodes from Subtree≤|q|I (g).
For all ∃pA.B ∈ K satisfied by g we select a witnessing path.
We cut it before the first nominal on the path and include it to the component.
We extend the resulting structure in a minimal way to make it parent and sibling closed.
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J is finite a model of K and a countermodel for q.

Part III: The definition of J

Let L = max numb. of leaves across all the components and M = max degree of all the nodes.
We let J to be composed of a copy of each Cπ for all nominal π

and |NTPI| · 2 · L ·M copies for all Cπ for non-nominal components π, named in a special way:

Edges between components are assigned as follows:

Check Part IV: The proof in our paper! Thanks for attention!
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