A tamed higher-arity extension of ALC Forward Guarded Fragment

June 22, 2021, QuantLA Research Seminar

Bartosz "Bart" Bednarczyk

TU DRESDEN & UNIVERSITY OF WROCŁAW

European Research Council Established by the European Commission Our motivation: what features make CQ answering hard for \mathcal{ALC} ?

Our motivation: what features make CQ answering hard for ALC? **1.** Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

hasMother \subseteq hasParent •

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

 $hasMother \subseteq hasParent$ •

 $Car \sqsubseteq (= 4)$.hasPartWheel

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

 $hasMother \subseteq hasParent$

 $Car \sqsubseteq (= 4)$.hasPartWheel

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]

Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent • $Car \sqsubseteq (= 4)$.hasPartWheel Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially:

Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent • Car \sqsubseteq (= 4).hasPartWheel • Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16]

Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent • Car \sqsubseteq (= 4).hasPartWheel • Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16] more: inverses [Lutz'07], self-loops [B., Rudolph'21 Submitted.]

Our motivation: what features make CQ answering hard for ALC? **1.** Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] $Car \sqsubseteq (= 4)$.hasPartWhee $hasMother \subseteq hasParent$ Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] **2.** Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16] more: inverses [Lutz'07], self-loops [B., Rudolph'21 Submitted.]

What makes ALC easy, but ALCI and the others hard?

What makes ALC easy, but ALCI and the others hard? Answer: Forward models!

What makes ALC easy, but ALCI and the others hard? Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

What makes ALC easy, but ALCI and the others hard? Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! \mathcal{FGF} [B. JELIA'21, This talk!]

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

• The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

Theorem (Grädel 1999)

The satisfiability problem for \mathcal{GF} is 2ExpTIME-complete.

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x \ (artst(x) \rightarrow \forall y \ (bkpr(y) \rightarrow adm(x, y)))$

Theorem (Grädel 1999)

The satisfiability problem for \mathcal{GF} is 2ExpTIME-complete.

Theorem (Bárány et al. 2013)

Conjunctive query entailment problem for \mathcal{GF} is 2ExpTIME-complete.

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

• The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(stud(x_1) \rightarrow \neg \forall x_2(prof(x_2) \rightarrow admires(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(lect(x_1) \rightarrow \neg \exists x_2(prof(x_2) \land \forall x_3(stud(x_3) \rightarrow intro(x_1, x_2, x_3))))$ Coexample 1. $\forall x_1r(x_1, x_1)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

Coexample 1. $\forall x_1 r(x_1, x_1)$

Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

Coexample 1. $\forall x_1 r(x_1, x_1)$

Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(stud(x_1) \rightarrow \neg \forall x_2(prof(x_2) \rightarrow admires(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER -complete.

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(stud(x_1) \rightarrow \neg \forall x_2(prof(x_2) \rightarrow admires(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER -complete.

If we replace suffices by infixes in \mathcal{FL} we get the forward fragment \mathcal{FF} .

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER -complete.

If we replace suffices by infixes in \mathcal{FL} we get the forward fragment \mathcal{FF} . Lemma (B. 2021)

 \mathcal{FF} is reducible to \mathcal{FL} in polynomial time.

On intersection of \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969]

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

On intersection of \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs \sqsubseteq \exists hasChld. \exists hasChld.*female*

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

On intersection of \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs $\sqsubseteq \exists hasChld. \exists hasChld. female$

In \mathcal{GF} :

 $\forall x \text{ grf-wth-gdtrs}(x) \rightarrow \exists y \text{ hasChld}(x, y) \land (\exists z \text{ hasChld}(y, z) \land \textit{female}(z))$
On intersection of \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs \sqsubseteq \exists hasChld. \exists hasChld.*female*

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Nice remark: \mathcal{FO} characterisation of formal languages

 $\forall x_1 \text{ grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \text{ hasChld}(x_1, x_2) \land \exists x_3 \text{ hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Nice remark: \mathcal{FO} characterisation of formal languages LTL corresponds to $\mathcal{FO}[\leq]$ over words, LTL[XF, XP] corresponds to $\mathcal{FO}^{2}[\leq]$

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Nice remark: \mathcal{FO} characterisation of formal languages LTL corresponds to $\mathcal{FO}[\leq]$ over words, LTL[XF, XP] corresponds to $\mathcal{FO}^2[\leq]$ Is there any logic equivalent to LTL[F] and LTL[XF] over words?

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Nice remark: \mathcal{FO} characterisation of formal languages LTL corresponds to $\mathcal{FO}[\leq]$ over words, LTL[XF, XP] corresponds to $\mathcal{FO}^2[\leq]$ Is there any logic equivalent to LTL[F] and LTL[XF] over words? Yes! $\mathcal{FGF}[\leq]$ and $\mathcal{FGF}[<] \odot$

 $\forall x_1 \text{ grf-wth-gdtrs}(x_1)
ightarrow \exists x_2 \text{ hasChld}(x_1, x_2) \land \exists x_3 \text{ hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Nice remark: \mathcal{FO} characterisation of formal languages LTL corresponds to $\mathcal{FO}[\leq]$ over words, LTL[XF, XP] corresponds to $\mathcal{FO}^{2}[\leq]$ Is there any logic equivalent to LTL[F] and LTL[XF] over words? Yes! $\mathcal{FGF}[\leq]$ and $\mathcal{FGF}[<] \odot$

Theorem (TFAE for a formal language $\mathcal{L} \subseteq \Sigma^*$)

(a) \mathcal{L} is definable in $\mathcal{FGF}[\leq]$, (b) is def. in LTL[**XF**],

(c) is rec. by partially-ordered 1way DFA, (d) $\mathrm{M}(\mathcal{L})$ belongs to the variety ${\bm R}$

(e) \mathcal{L} is a fin disj. union $A_0^* a_1 A_1^* \dots a_k A_k^*$ with $a_i \in \Sigma$, $A_i \subseteq \Sigma$ and $a_i \notin A_{i-1}$.

• New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathsf{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathsf{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

 $\varphi_{\mathsf{loop}(R)}(x_1) = R(x_1, x_1).$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathrm{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

 $\varphi_{\mathsf{loop}(R)}(x_1) = R(x_1, x_1).$

 $\varphi_{\mathsf{inv}(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{\mathrm{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$$

 $\varphi_{\text{loop}(R)}(x_1) = R(x_1, x_1).$ $\varphi_{\text{inv}(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$ $\varphi_{\text{unique}(A)} := \forall x_1 x_2 \underbrace{A(x_1) \land A(x_2)}_{\text{not guarded!}} \rightarrow x_1 = x_2$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- *FGF* cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{tr(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \rightarrow R(x_1, x_3).$$

$$\varphi_{loop(R)}(x_1) = R(x_1, x_1).$$

$$\varphi_{inv(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$$

$$\varphi_{unique(A)} := \forall x_1 x_2 \ \underbrace{A(x_1) \land A(x_2)}_{not \ guarded!} \rightarrow x_1 = x_2$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} are EXPTIME-complete.

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- *FGF* cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{\operatorname{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$$

$$\varphi_{\operatorname{loop}(R)}(x_1) = R(x_1, x_1).$$

$$\varphi_{\operatorname{inv}(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$$

$$\varphi_{\operatorname{unique}(A)} := \forall x_1 x_2 \underbrace{A(x_1) \land A(x_2)}_{\operatorname{not guarded}!} \to x_1 = x_2$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} are EXPTIME-complete.

Harvesting from the results of Grädel and Bárány et al:

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- *FGF* cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{\operatorname{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$$

$$\varphi_{\operatorname{loop}(R)}(x_1) = R(x_1, x_1).$$

$$\varphi_{\operatorname{inv}(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$$

$$\varphi_{\operatorname{unique}(A)} := \forall x_1 x_2 \ \underbrace{A(x_1) \land A(x_2)}_{\operatorname{not guarded!}} \to x_1 = x_2$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} are EXPTIME-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary

Data complexity of KB SAT is NP-compl and coNP-compl for querying. \mathcal{FGF} has FMP and is finitely-controllable.

Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $\mathbb{R} \in \Sigma$ of arity $\ell = \operatorname{ar}(\mathbb{R}) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $\mathbb{R}(\vec{x}_{i...i+\ell-1})$ or $\neg \mathbb{R}(\vec{x}_{i...i+\ell-1})$.

Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $\mathbb{R} \in \Sigma$ of arity $\ell = \operatorname{ar}(\mathbb{R}) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $\mathbb{R}(\vec{x}_{i...i+\ell-1})$ or $\neg \mathbb{R}(\vec{x}_{i...i+\ell-1})$.

Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $R \in \Sigma$ of arity $\ell = ar(R) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $R(\vec{x}_{i...i+\ell-1})$ or $\neg R(\vec{x}_{i...i+\ell-1})$.

Lemma

The number of different (Σ, n) -types is $\leq 2^{|\Sigma| \cdot n^2}$. The number of conjuncts in each (Σ, n) -type is $\leq |\Sigma| \cdot n$

Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.

Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.

Lemma

Every satisfiable \mathcal{FGF} knowledge base has a HAF (counter)model.

Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.

Lemma

Every satisfiable \mathcal{FGF} knowledge base has a HAF (counter)model.

Proof

via suitable notion of HAF-unravelling, similar to [BBR, ECAI'20]

1. Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

3. Make \mathfrak{F} root-sparse, i.e. $\mathfrak{F}_{F\cap\mathbb{N}}$ should have $\leq \operatorname{poly}(\mathcal{K})$ tuples in relations.

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

- **3.** Make \mathfrak{F} root-sparse, i.e. $\mathfrak{F}|_{F \cap \mathbb{N}}$ should have $\leq \operatorname{poly}(\mathcal{K})$ tuples in relations.
- **4.** Do some pruning to establish that degree of each node is $\leq poly(\mathcal{K})$.

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

3. Make ℑ root-sparse, i.e. ℑ↾_{F∩ℕ} should have ≤ poly(K) tuples in relations.
4. Do some pruning to establish that degree of each node is ≤ poly(K).
5. The "relevant" part of ℑ is of depth ≤ poly(number of types) = exp(K).

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

Make ℱ root-sparse, i.e. ℱ↾_{F∩ℕ} should have ≤ poly(𝔅) tuples in relations.
 Do some pruning to establish that degree of each node is ≤ poly(𝔅).
 The "relevant" part of ℱ is of depth ≤ poly(number of types) = exp(𝔅).
 Use APSPACE tableaux-like procedure to construct the relevant part of ℱ.

- **1.** Take a satisfiable \mathcal{FGF} knowledge base \mathcal{K} and any of its models \mathfrak{A} .
- **2.** Transform \mathfrak{A} into a HAF model \mathfrak{F} of \mathcal{K} .

3. Make \mathfrak{F} root-sparse, i.e. $\mathfrak{F}_{\vdash F \cap \mathbb{N}}$ should have $\leq \operatorname{poly}(\mathcal{K})$ tuples in relations.

- **4.** Do some pruning to establish that degree of each node is $\leq poly(\mathcal{K})$.
- **5.** The "relevant" part of \mathfrak{F} is of depth $\leq \operatorname{poly}(\operatorname{number} of \operatorname{types}) = exp(\mathcal{K})$.
- **6.** Use $\operatorname{APSPACE}$ tableaux-like procedure to construct the relevant part of \mathfrak{F} .

Theorem (B., JELIA 2021)

Knowledge-base SAT for \mathcal{FGF} is ExpTime-complete.
Bartosz "Bart" Bednarczyk Forward Guarded Fragment

Recap: Conjunctive query is a conjunction of positive atoms.

Def: $\mathcal{K} \models q$ iff for all models \mathfrak{A} of \mathcal{K} we have $\mathfrak{A} \models q$ (query q matches \mathfrak{A})

If $\mathfrak{A} \models \mathcal{K}$ but $\mathfrak{A} \not\models q$ we call \mathfrak{A} a countermodel for (\mathcal{K}, q) .

Recap: Conjunctive query is a conjunction of positive atoms.

Def: $\mathcal{K} \models q$ iff for all models \mathfrak{A} of \mathcal{K} we have $\mathfrak{A} \models q$ (query q matches \mathfrak{A})

If $\mathfrak{A} \models \mathcal{K}$ but $\mathfrak{A} \not\models q$ we call \mathfrak{A} a countermodel for (\mathcal{K}, q) .

Lemma

If there is countermodel for (\mathcal{K}, q) then there is also a HAF countermodel.

Recap: Conjunctive query is a conjunction of positive atoms.

Def: $\mathcal{K} \models q$ iff for all models \mathfrak{A} of \mathcal{K} we have $\mathfrak{A} \models q$ (query q matches \mathfrak{A})

If $\mathfrak{A} \models \mathcal{K}$ but $\mathfrak{A} \not\models q$ we call \mathfrak{A} a countermodel for (\mathcal{K}, q) .

Lemma

If there is countermodel for (\mathcal{K}, q) then there is also a HAF countermodel.

Caveat: W.I.o.g. we assume that queries are preffix and suffix closed, e.g. if $U(x_1, x_2, x_3, x_4) \in q$ then $U_3(x_1, x_2, x_3) \in q$

Recap: Conjunctive query is a conjunction of positive atoms.

Def: $\mathcal{K} \models q$ iff for all models \mathfrak{A} of \mathcal{K} we have $\mathfrak{A} \models q$ (query q matches \mathfrak{A})

If $\mathfrak{A} \models \mathcal{K}$ but $\mathfrak{A} \not\models q$ we call \mathfrak{A} a countermodel for (\mathcal{K}, q) .

Lemma

If there is countermodel for (\mathcal{K}, q) then there is also a HAF countermodel.

Caveat: W.I.o.g. we assume that queries are preffix and suffix closed, e.g. if $U(x_1, x_2, x_3, x_4) \in q$ then $U_3(x_1, x_2, x_3) \in q$

The first important step: how to query with HAF-shaped queries?

Recap: Conjunctive query is a conjunction of positive atoms.

Def: $\mathcal{K} \models q$ iff for all models \mathfrak{A} of \mathcal{K} we have $\mathfrak{A} \models q$ (query q matches \mathfrak{A})

If $\mathfrak{A} \models \mathcal{K}$ but $\mathfrak{A} \not\models q$ we call \mathfrak{A} a countermodel for (\mathcal{K}, q) .

Lemma

If there is countermodel for (\mathcal{K}, q) then there is also a HAF countermodel.

Caveat: W.I.o.g. we assume that queries are preffix and suffix closed, e.g. if $U(x_1, x_2, x_3, x_4) \in q$ then $U_3(x_1, x_2, x_3) \in q$

The first important step: how to query with HAF-shaped queries?

Quite technical generalisation of the rolling-up technique of transforming tree-shaped matches into concepts.

Main ingredients for Query entailment: Part II (rolling-up) Idea: Traverse top-down and construct predicates $\operatorname{Subt}_q^*(\star)$. A, BU S \mathbf{R} \mathbf{T} A, C(u''В u' \mathbf{R} U С В v'v\$ ¥ Α wR A, C

Main ingredients for Query entailment: Part II (rolling-up) Idea: Traverse top-down and construct predicates $\operatorname{Subt}_{q}^{\star}(\star)$. A, BU S $\operatorname{Match}_q(x_1) := \operatorname{Subt}_q^u(x_1) :=$ \mathbf{R} \mathbf{T} (u''A, CВ u' \mathbf{R} U С В v'vŞ -≫ Α wR A, C

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

Main ingredients for Query entailment: Part II (rolling-up) Idea: Traverse top-down and construct predicates $\operatorname{Subt}_q^*(\star)$. A, BS $\operatorname{Match}_q(x_1) := \operatorname{Subt}_q^u(x_1) :=$ R $A(x_1) \wedge B(x_1) \wedge \exists x_2 Subt_q^{uu'}(x_1, x_2) \wedge \exists x_2 Subt_q^{uu''}(x_1, x_2)$ \mathbf{T} *u''* A, Cu' \mathbf{R} U С В v'Ş -≫ Α wR A, C

Main ingredients for Query entailment: Part II (rolling-up) Idea: Traverse top-down and construct predicates $\operatorname{Subt}_{a}^{\star}(\star)$. A, BS $\operatorname{Match}_q(x_1) := \operatorname{Subt}_q^u(x_1) :=$ $\mathrm{A}(x_1) \wedge \mathrm{B}(x_1) \wedge \exists x_2 \mathrm{Subt}_q^{uu'}(x_1, x_2) \wedge \exists x_2 \mathrm{Subt}_q^{uu''}(x_1, x_2)$ Т (*u*″ A, C $\operatorname{Subt}_{a}^{uu'}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{S}(x_1, x_2) \wedge \operatorname{B}(x_2)$ $\operatorname{Subt}_{a}^{uu''}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{T}_2(x_1, x_2) \wedge \operatorname{A}(x_2) \wedge \operatorname{C}(x_2)$ Ł U С v'В Ş wА R A, C

Idea: Traverse top-down and construct predicates $\operatorname{Subt}_{a}^{\star}(\star)$. A, BS $\operatorname{Match}_{q}(x_{1}) := \operatorname{Subt}_{q}^{u}(x_{1}) :=$ $A(x_1) \wedge B(x_1) \wedge \exists x_2 \operatorname{Subt}_q^{uu'}(x_1, x_2) \wedge \exists x_2 \operatorname{Subt}_q^{uu''}(x_1, x_2)$ Т *u''* A, C $\operatorname{Subt}_{a}^{uu'}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{S}(x_1, x_2) \wedge \operatorname{B}(x_2)$ $\operatorname{Subt}_{a}^{uu''}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{T}_2(x_1, x_2) \wedge \operatorname{A}(x_2) \wedge \operatorname{C}(x_2)$ \mathbf{R} U $\wedge \exists x_3 \operatorname{Subt}_q^{uu''v'}(x_1, x_2, x_3) \wedge \exists x_3 \operatorname{Subt}_q^{u''v}(x_2, x_3)$ v'В С $\operatorname{Subt}_{a}^{uu''v'}(x_1, x_2, x_3) := \operatorname{T}(x_1, x_2, x_3) \wedge \operatorname{B}(x_3) \wedge \operatorname{R}(x_2, x_3)$ Ş For any HAF-shaped CQ one can polytime compute А wthe definition of $Match_a(x_{root})$ with a meaning that R $\operatorname{Match}_{q}^{\mathfrak{A}} \neq \emptyset \text{ iff } \mathfrak{A} \models q.$ A, C

Idea: Traverse top-down and construct predicates $\operatorname{Subt}_{a}^{\star}(\star)$. A, BS $\operatorname{Match}_q(x_1) := \operatorname{Subt}_q^u(x_1) :=$ $A(x_1) \wedge B(x_1) \wedge \exists x_2 Subt_a^{uu'}(x_1, x_2) \wedge \exists x_2 Subt_a^{uu''}(x_1, x_2)$ Т *u''* A, C $\operatorname{Subt}_{a}^{uu'}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{S}(x_1, x_2) \wedge \operatorname{B}(x_2)$ Ŗ $\operatorname{Subt}_{a}^{uu''}(x_1, x_2) := \operatorname{R}(x_1, x_2) \wedge \operatorname{T}_2(x_1, x_2) \wedge \operatorname{A}(x_2) \wedge \operatorname{C}(x_2)$ U $\wedge \exists x_3 \operatorname{Subt}_q^{uu''v'}(x_1, x_2, x_3) \wedge \exists x_3 \operatorname{Subt}_q^{u''v}(x_2, x_3)$ v'В С $\operatorname{Subt}_{a}^{uu''v'}(x_1, x_2, x_3) := \operatorname{T}(x_1, x_2, x_3) \wedge \operatorname{B}(x_3) \wedge \operatorname{R}(x_2, x_3)$ Ş For any HAF-shaped CQ one can polytime compute А wthe definition of $Match_a(x_{root})$ with a meaning that R $\operatorname{Match}_{a}^{\mathfrak{A}} \neq \emptyset \text{ iff } \mathfrak{A} \models q.$ A, C $\mathcal{K} \not\models q_{haf} \text{ iff } \mathcal{K} \cup \{ \forall x_1 \neg \text{Match}_{q_{haf}}(x_1) \} \text{ is SAT.}$

Main ingredients for Querying: Part III (beyond HAF-shaped CQs)

Main ingredients for Querying: Part III (beyond HAF-shaped CQs) To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting. Main ingredients for Querying: Part III (beyond HAF-shaped CQs) To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting. Intuitively it mimics a query match by partitioning variables into three sets: Main ingredients for Querying: Part III (beyond HAF-shaped CQs) To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting. Intuitively it mimics a query match by partitioning variables into three sets: (a) roots, Main ingredients for Querying: Part III (beyond HAF-shaped CQs)

To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting.

Intuitively it mimics a query match by partitioning variables into three sets:

(a) roots, (b) HAFs dangling from roots, and

Main ingredients for Querying: Part III (beyond HAF-shaped CQs) To go beyond HAF-shaped CQs we need an auxiliary notion of a splitting. Intuitively it mimics a query match by partitioning variables into three sets: (a) roots, (b) HAFs dangling from roots, and (c) HAFs lying far from roots.

 $\wedge \left(R(x_0, x_{01}) \land S(x_{01}, x_{010}) \land R(x_{010}, x_{0100}) \right) \land \left(A(x_{200}) \land R(x_{200}, x_{2001}) \land B(x_{2001}) \right).$

Roots = { x_0, x_1 } SubTree₁ = { x_{00}, x_{000} } SubTree₂ = { $x_{01}, x_{010}, x_{0100}$ } Trees = { x_{200}, x_{2001} } name(x_0) = a, name(x_1) = b root- $of(1) = x_0$, root- $of(2) = x_0$

 $\wedge \left(\mathrm{R}(x_{0}, x_{01}) \wedge \mathrm{S}(x_{01}, x_{010}) \wedge \mathrm{R}(x_{010}, x_{0100}) \right) \wedge \left(\mathrm{A}(x_{200}) \wedge \mathrm{R}(x_{200}, x_{2001}) \wedge \mathrm{B}(x_{2001}) \right).$

Roots = { x_0, x_1 } SubTree₁ = { x_{00}, x_{000} } SubTree₂ = { $x_{01}, x_{010}, x_{0100}$ } Trees = { x_{200}, x_{2001} } name(x_0) = a, name(x_1) = b root- $of(1) = x_0$, root- $of(2) = x_0$

With every splitting Π of q we associate a spoiler an \mathcal{FGF} -kb \mathcal{K}_{Π}^{2} .

 $\wedge \left(\mathrm{R}(x_{0}, x_{01}) \wedge \mathrm{S}(x_{01}, x_{010}) \wedge \mathrm{R}(x_{010}, x_{0100}) \right) \wedge \left(\mathrm{A}(x_{200}) \wedge \mathrm{R}(x_{200}, x_{2001}) \wedge \mathrm{B}(x_{2001}) \right).$

Roots = { x_0, x_1 } SubTree₁ = { x_{00}, x_{000} } SubTree₂ = { $x_{01}, x_{010}, x_{0100}$ } Trees = { x_{200}, x_{2001} } name(x_0) = a, name(x_1) = b root- $of(1) = x_0$, root- $of(2) = x_0$

With every splitting Π of q we associate a spoiler an \mathcal{FGF} -kb \mathcal{K}_{Π}^{4} . Idea: if $\mathcal{K} \cup \mathcal{K}_{\Pi}^{4}$ then there is no matches of q splitting like Π .

 $\wedge \left(\mathrm{R}(x_{0}, x_{01}) \wedge \mathrm{S}(x_{01}, x_{010}) \wedge \mathrm{R}(x_{010}, x_{0100}) \right) \wedge \left(\mathrm{A}(x_{200}) \wedge \mathrm{R}(x_{200}, x_{2001}) \wedge \mathrm{B}(x_{2001}) \right).$

Roots = { x_0, x_1 } SubTree₁ = { x_{00}, x_{000} } SubTree₂ = { $x_{01}, x_{010}, x_{0100}$ } Trees = { x_{200}, x_{2001} } name(x_0) = a, name(x_1) = b root- $of(1) = x_0$, root- $of(2) = x_0$

With every splitting Π of q we associate a spoiler an \mathcal{FGF} -kb \mathcal{K}_{Π}^{4} . Idea: if $\mathcal{K} \cup \mathcal{K}_{\Pi}^{4}$ then there is no matches of q splitting like Π . To construct a spoiler we must know how to "describe" Π in \mathcal{FGF} , in particular cases (a), (b) and (c). Bartosz "Bart" Bednarczyk Forward Guarded Fragment

Simply insert $(\exists x_2 \ R(x_1, x_2) \land R(x_1, x_2) \land Match_{q_{haf}}(x_2)) (a)$ into the DB part of \mathcal{K} .

Simply insert $(\exists x_2 \ R(x_1, x_2) \land R(x_1, x_2) \land Match_{q_{haf}}(x_2))$ (a) into the DB part of \mathcal{K} .

Forward Guarded Fragment

Simply insert $(\exists x_2 \ R(x_1, x_2) \land R(x_1, x_2) \land Match_{q_{haf}}(x_2)) (a)$ into the DB part of \mathcal{K} .

Fatal error! Not in \mathcal{FGF} .

Simply insert $(\exists x_2 \ R(x_1, x_2) \land R(x_1, x_2) \land Match_{q_{haf}}(x_2)) (a)$ into the DB part of \mathcal{K} .

Fatal error! Not in \mathcal{FGF} . Repair idea: introduce a bit more constants to \mathcal{FGF} but not too much.

Bartosz "Bart" Bednarczyk

Forward Guarded Fragment

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

1. We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\downarrow^*}$.

Bartosz "Bart" Bednarczyk Forward Guarded Fragment

1. We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\zeta^*}$. **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\zeta^*}$ is SAT then $\mathcal{K} \not\models q$.

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\downarrow^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\downarrow^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\downarrow^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\downarrow^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.
- **6.** Hence, we get a reduction to SAT \bigcirc . This also works for unions of CQs.

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\zeta^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.
- **6.** Hence, we get a reduction to SAT \odot . This also works for unions of CQs.

Theorem

Union of CQs entailment over \mathcal{FGF} knowledge bases is $\mathrm{ExpTime}\text{-}complete.$

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{\zeta^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.
- **6.** Hence, we get a reduction to SAT \odot . This also works for unions of CQs.

Theorem

Union of CQs entailment over \mathcal{FGF} knowledge bases is ExpTIME-complete.

Nice application: Forward Guarded Negation fragment of \mathcal{FO}

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{4^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.
- **6.** Hence, we get a reduction to SAT ^(C). This also works for unions of CQs.

Theorem

Union of CQs entailment over \mathcal{FGF} knowledge bases is ExpTIME-complete.

Nice application: Forward Guarded Negation fragment of \mathcal{FO} For ψ in (forward) GNFO we poly-compute $\varphi \in (\text{forward})$ GF and a UCQ q s.t. ψ is SAT iff $\varphi \models q$.

- **1.** We employ a generalisation of spoilers called super-spoilers $\mathcal{K}_q^{4^*}$.
- **2.** If $\mathcal{K} \cup \mathcal{K}_q^{\downarrow^*}$ is SAT then $\mathcal{K} \not\models q$.
- **3.** It turns out that each super-spoiler is of poly-size in $|\mathcal{K}| + |q|$.
- 4. There are exponentially many super-spoilers.
- **5.** Super-spoilers can be enumerated in exponential time.
- **6.** Hence, we get a reduction to SAT ⁽²⁾. This also works for unions of CQs.

Theorem

Union of CQs entailment over \mathcal{FGF} knowledge bases is ExpTIME-complete.

Nice application: Forward Guarded Negation fragment of \mathcal{FO} For ψ in (forward) GNFO we poly-compute $\varphi \in (\text{forward})$ GF and a UCQ q s.t. ψ is SAT iff $\varphi \models q$.

Theorem

The satisfiability of Forward Guarded Negation \mathcal{FO} is ExpTIME-complete.

Forward GF = formulae guarded but kept forward

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is $\mathrm{ExpTime}$ -complete,

also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Understand model theory of Ordered/Fluted/Forward Fragment of *FO*.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski
Ongoing work with Reijo Jaakkola, University of Tampere

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

 Understand model theory of Ordered/Fluted/Forward Fragment of FO.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
Study FGF + I/O/Q (partial results obtained)

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

 Understand model theory of Ordered/Fluted/Forward Fragment of *FO*.
i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
Study *FGF* + *I*/*O*/*Q* (partial results obtained)
FGF+μ or *FGF*+S behave nicer than *GF*+*TG* (with E. Kieronski)

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

- **1.** Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .
- i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
- **2.** Study $\mathcal{FGF} + \mathcal{I}/\mathcal{O}/\mathcal{Q}$ (partial results obtained)
- **3.** $\mathcal{FGF}+\mu$ or $\mathcal{FGF}+S$ behave nicer than $\mathcal{GF}+TG$ (with E. Kieronski)
- 4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

- **1.** Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .
- i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
- **2.** Study $\mathcal{FGF} + \mathcal{I}/\mathcal{O}/\mathcal{Q}$ (partial results obtained)
- **3.** $\mathcal{FGF}+\mu$ or $\mathcal{FGF}+S$ behave nicer than $\mathcal{GF}+TG$ (with E. Kieronski)
- 4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
- 5. Forward TGDs (with Piotr Nalewaja).

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Thanks for attention!

Bartosz "Bart" Bednarczyk

Forward Guarded Fragment