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Two nice logics: GF [Andreka et al. 1998] and ordered logics [Herzig, Quine, B.]

• The guarded fragment of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

Example 1. Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Example 2. Every artist envies every beekeeper he admires
∀x artst(x)→ ∀y [adm(x , y)→ (bkpr(y)→ env(x , y))]

Coexample 3. Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

SAT
2ExpTime-complete

FMP CIP ŁTPT
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On the infamous work of Purdy

Error 1. SAT of Lsuf is Tower-hard (discovered by Ian Pratt-Hartmann)
Error 2. Lsuf does not enjoy CIP (this work!)
Fact: ŁPTP proof of Purdy lack of mathematical arguments.

Conclusion:
We need to study ordered logics more!
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Our contribution (Part I)

We study Lpre, Lsuf, Linf and their guarded subfragments Gpre,Gsuf,Ginf.
1. We introduced a suitable notion of bisimulation.
2. Comparison of relative expressive powers

Solid: more expr. Dashed: incomp.
ϕpre := ∀x1∀x2∀x3 R(x1, x2, x3)→ S(x1, x2)
ϕsuf := ∀x1∀x2∀x3 R(x1, x2, x3)→ T(x2, x3)

+ Van-Benthem Style Theorems, i.e. FO/∼L = L.

3. Lsuf and Linf do not enjoy CIP. A very simple counterexample:
ϕ := ∀x1∀x2∀x3 [R(x1, x2) ∧ R(x2, x3)→ (P1(x1) ∧ P2(x3))] ∧∀x1∀x2 [(P1(x1) ∧ P2(x3))→ R(x1, x2)]
ψ := ∃x1∃x2∃x3[R(x1, x2) ∧ R(x2, x3) ∧ Q1(x1) ∧ Q2(x2)] ∧∀x1∀x2 [(Q1(x1) ∧ Q2(x2))→ ¬R(x1, x2)]

ϕ |= ¬ψ (why?)
but A |= ϕ and B |= ψ are
Linf[{R}]-bisimilar! ⇒ no Linf-interp.
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Conclusions

1. Status of Lsuf and Linf

SAT FMP CIP ŁTPT

2. Status of Lpre

SAT FMP CIP ŁTPT

3. Status of Ginf,Gsuf and Gpre

SAT FMP CIP ŁTPT

Open problems: interpolant existence problem, Łoś-Tarski for any equality-free fragment
Icons that appear in the paper were downloaded from flaticon.com. No changes have been made.
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