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ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...
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The success of Visibly Pushdown Languages (VPLs)

VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?
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Is ALCvpl robust under extensions with features supported by W3C ontology languages?

• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#
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Proof sketch: Undecidability of ALCvpl + Self

Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.
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Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.
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Proof sketch: Undecidability of ALCO + r#s# (Introduction)

Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?
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To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.
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Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries

Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.
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Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io
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