
Beyond ALCreg:
Exploring Non-Regular Extensions of PDL with DL Features

4th of September, DL Workshop 2023 & 22nd of September, JELIA 2023

Bartosz “Bart” Bednarczyk
With special thanks to Reijo Jaakkola, Witek Charatonik, and Sebastian Rudolph for all their support.

TU Dresden & University of Wrocław

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/


ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)

• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).

• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)

• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded

• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



ALCreg := ALC + ∃L.C + ∀L.C for all languages L ∈ REG.

ALC+Visibly Pushdown Languages is decidable.

Some historical results about ALCreg and beyond

• Originally developed as a logic for program verification (a.k.a. Propositional Dynamic Logic)
• ExpTime-complete satisfiability (Pratt 1978).
• Robust under DL extensions (e.g. the Z family of DLs by Calvanese et al.)

Can we go beyond regularity?

• CFL (’81)
• REG + r#sr#

• REG + r#s# + s#r#

• REG + r#s#

• REG + (semi) simple minded
• More...

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 1 / 8



The success of Visibly Pushdown Languages (VPLs)

VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)

VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)

VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack

Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)

Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages

• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)

• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs

• XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



The success of Visibly Pushdown Languages (VPLs)
VPL = Finite Automata + Input-Driven Stack
Σ = Σc ∪ Σi ∪ Σr (call + internal + returns)
Push (pop) only after reading a call (return).

• Ex1: Dyck languages
• Ex2: c#r# but not r#c# (for c ∈ Σc , r ∈ Σr)
• Ex3: Every regular language is in VPL

Why do we care?

• Verification of recursive programs • XML schema validation

Why not to employ VPL in knowledge representation?
Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 2 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?

• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)

• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)
How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops

Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals

Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter

ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg

ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Is ALCvpl robust under extensions with features supported by W3C ontology languages?
• ALCvpl is decidable and 2ExpTime-complete (Löding et. al 2007)
• ALCvpl is inverses is undecidable (unpublished, discovered in Stefan Göller’s PhD Thesis’2008)

How about other features? How about querying?

Loops Nominals Queries

Visibly one counter ALCr#s#
reg ALC-TBoxes + CRPQs with r#s#

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 3 / 8



Proof sketch: Undecidability of ALCvpl + Self

Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.

Output: Is L(A1) ∩L(A2) non-empty?
Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters.

Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCvpl + Self
Input: Deterministic one counter automata A1, A2.
Output: Is L(A1) ∩L(A2) non-empty?

Valiant 1973

Key insight: Deterministic one-counter languages can be projectively recognized by VPA.

Given DOCA A1,A2, we get VPA Â1, Â2 projectively recognizing their lang. + Ĉ1, Ĉ2 for complements

Trick 1: Encode “word-like structures” with loops storing the actual letters. Example: abbac

Trick 2: Employ concepts ∀Â1.OK1 u ∀Ĉ1.¬OK1 to decorate interpretations with “acceptance” of A1.
Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 4 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)

Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)
Input: A finite set of 4-sided tiles with a distinguished colour �.

Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?

Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



Proof sketch: Undecidability of ALCO + r#s# (Introduction)
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Is there N, M ∈ N so that we can cover a �-bordered (N×M) rectangle w.r.t tiling rules?

Problem 1: How to express existence of an N such that every N steps from the start a left-border tile occurs?
Problem 2: How to express that a tile and the tile N steps further have matching sides?

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 5 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.

We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



To solve problems from the previous slide, we must teach snakes how to measure. Use yardsticks!

Key property: there is unique N s.t. distances st md and md endt are all equal to N.
We sychronize snakes and yardsticks obtaining metricobras. Metricobras exist iff tiling systems are solvable.

Key property:
An element N steps after d
carries a tile t iff
d can r#s# reach endt.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 6 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries

Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.

Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Proof sketch: Undecidability of querying ALC-TBoxes with non-regular queries
Input: A finite set of 4-sided tiles with a distinguished colour �.
Output: Can we cover an infinite triangle (a.k.a. octant) according to tiling rules?

Proof idea: the ontology defines “octant-like” models and the query detects errors with tiling.

Key Property: C 6|= q iff the octant can be covered.

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 7 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops

Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals

Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter

ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg

ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?

Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?

Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8



Decidability of (extensions of) ALCreg do not transfer well to the non-regular setting.

Loops Nominals Queries

Vis. 1-counter ALCr#s#
reg ALC + CRPQs with r#s#

Open Problem 1: Incorporating ABoxes?
Open Problem 2: Finite Satisfiability of ALCvpl?
Open Problem 3: Sharpen undecidability for ALCvpl with Self?

Looking for (postdoc?) job from Sept’24!

See: bartoszjanbednarczyk.github.io

Bartosz “Bart” Bednarczyk Exploring Non-Regular Extensions of PDL with DL Features 8 / 8


