Exploiting forwardness: Satisfiability and Query Entailment in Forward Guarded Fragment

May 17, 2021, JELIA 2021

Bartosz "Bart" Bednarczyk

TU DRESDEN & UNIVERSITY OF WROCŁAW

European Research Council Established by the European Commission Our motivation: what features make CQ answering hard for \mathcal{ALC} ?

Our motivation: what features make CQ answering hard for ALC? **1.** Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

 $hasMother \subseteq hasParent$ •

 $Car \sqsubseteq (= 4)$.hasPartWheel

Our motivation: what features make CQ answering hard for ALC?

1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08]

 $hasMother \subseteq hasParent$

 $Car \sqsubseteq (= 4)$.hasPartWheel

Also with arithmetic and statistical properties [Baader, B., Rudolph'20]



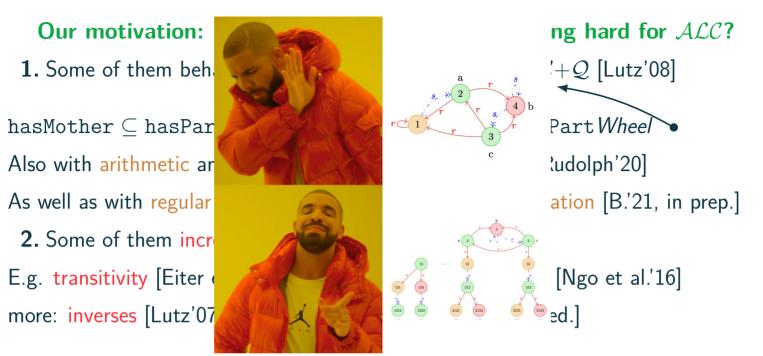
Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent • $Car \sqsubseteq (= 4)$.hasPartWheel Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially:

Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent $Car \sqsubseteq (= 4)$.hasPartWheel Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16]

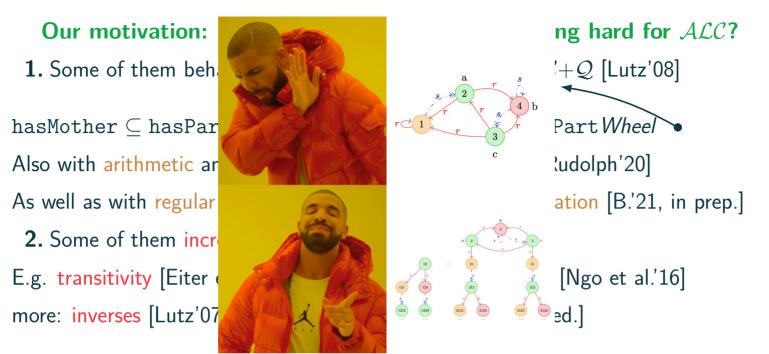
Our motivation: what features make CQ answering hard for ALC? 1. Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] hasMother \subseteq hasParent • Car \sqsubseteq (= 4).hasPartWheel Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] 2. Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16] more: inverses [Lutz'07], self-loops [B., Rudolph'21 Submitted.]

Our motivation: what features make CQ answering hard for ALC? **1.** Some of them behaves nice, e.g. ALC, ALC+H, ALC+Q [Lutz'08] $Car \sqsubseteq (= 4)$.hasPartWheel $hasMother \subseteq hasParent$ Also with arithmetic and statistical properties [Baader, B., Rudolph'20] As well as with regular expr, fixed points, (safe) role combination [B.'21, in prep.] **2.** Some of them increase the complexity exponentially: E.g. transitivity [Eiter et al.'09], nominals (a.k.a. constants) [Ngo et al.'16] more: inverses [Lutz'07], self-loops [B., Rudolph'21 Submitted.]

What makes ALC easy, but ALCI and the others hard?

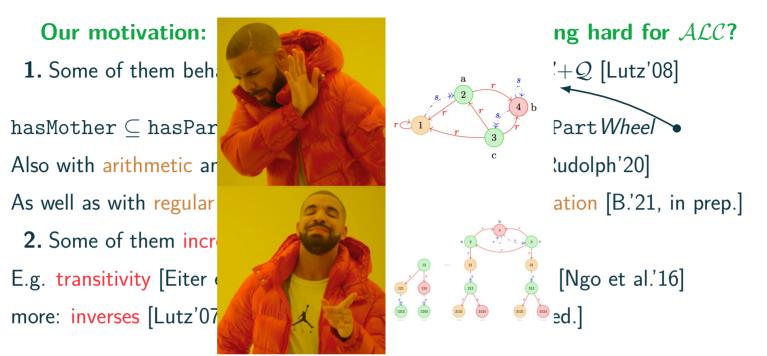


What makes ALC easy, but ALCI and the others hard? Answer: Forward models!



What makes ALC easy, but ALCI and the others hard? Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?



What makes ALC easy, but ALCI and the others hard? Answer: Forward models!

Can we find a higher-arity version of ALC with ExpTime querying?

Yes! \mathcal{FGF} [B. JELIA'21, This talk!]

• The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

Theorem (Grädel 1999)

The satisfiability problem for \mathcal{GF} is 2ExpTIME-complete.

- The guarded fragment of \mathcal{FO} is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

Example 1. Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

Example 2. Every artist envies every bekeeper he admires

 $\forall x \ artst(x) \rightarrow \forall y \ [adm(x, y) \rightarrow (bkpr(y) \rightarrow env(x, y))]$

Coexample 3. Every artist admires every beekeeper

 $\forall x \ (artst(x) \rightarrow \forall y \ (bkpr(y) \rightarrow adm(x, y)))$

Theorem (Grädel 1999)

The satisfiability problem for \mathcal{GF} is 2ExpTIME-complete.

Theorem (Bárány et al. 2013)

Conjunctive query entailment problem for \mathcal{GF} is 2ExpTIME-complete.

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

• The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.

3 / 8

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables.

Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(lect(x_1) \rightarrow \neg \exists x_2(prof(x_2) \land \forall x_3(stud(x_3) \rightarrow intro(x_1, x_2, x_3))))$ Coexample 1. $\forall x_1r(x_1, x_1)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

Coexample 1. $\forall x_1 r(x_1, x_1)$

Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

Coexample 1. $\forall x_1 r(x_1, x_1)$

Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER-complete.

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER -complete.

If we replace suffices by infixes in \mathcal{FL} we get the forward fragment \mathcal{FF} .

- The fluted fragment of \mathcal{FO} is obtained by keeping the variables ordered.
- In atoms we can use only suffixes of the sequences of already quantified variables. Example 1. No student admires every professor

 $\forall x_1(\textit{stud}(x_1) \rightarrow \neg \forall x_2(\textit{prof}(x_2) \rightarrow \textit{admires}(x_1, x_2)))$

Example 2. No lecturer introduces any professor to every student

 $\forall x_1(\mathit{lect}(x_1) \rightarrow \neg \exists x_2(\mathit{prof}(x_2) \land \forall x_3(\mathit{stud}(x_3) \rightarrow \mathit{intro}(x_1, x_2, x_3))))$

- Coexample 1. $\forall x_1 r(x_1, x_1)$
- Coexample 2. $\forall x_1 \forall x_2 r(x_1, x_2) \rightarrow s(x_2, x_1)$

Coexample 3. $\forall x_1 \forall x_2 \forall x_3 r(x_1, x_2) \land r(x_2, x_3) \rightarrow r(x_1, x_3)$

Theorem (Pratt-Hartman et al. 2016)

The satisfiability problem for \mathcal{FL} is TOWER -complete.

If we replace suffices by infixes in \mathcal{FL} we get the forward fragment \mathcal{FF} . Lemma (B. 2021)

 \mathcal{FF} is reducible to \mathcal{FL} in polynomial time.

Two nice logics: GF [Andreka et al. 1998] and FL [Quine 1969]

Two nice logics: \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs $\sqsubseteq \exists hasChld. \exists hasChld. female$ Two nice logics: \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs $\sqsubseteq \exists hasChld. \exists hasChld. female$

In \mathcal{GF} :

 $\forall x \text{ grf-wth-gdtrs}(x)
ightarrow \exists y ext{ hasChld}(x,y) \land \exists z ext{ hasChld}(y,z) \land \textit{female}(z)$

Two nice logics: \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs $\sqsubseteq \exists hasChld. \exists hasChld. female$

In \mathcal{GF} :

 $\forall x \text{ grf-wth-gdtrs}(x)
ightarrow \exists y ext{ hasChld}(x,y) \land \exists z ext{ hasChld}(y,z) \land \textit{female}(z)$

In \mathcal{FF} :

 $\forall x_1 \texttt{grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \texttt{hasChld}(x_1, x_2) \land \exists x_3 \texttt{hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Two nice logics: \mathcal{GF} [Andreka et al. 1998] and \mathcal{FL} [Quine 1969] Both \mathcal{GF} and \mathcal{FF} capture \mathcal{ALC} , e.g.: "Grandfathers with granddaughters" grf-wth-gdtrs $\sqsubseteq \exists hasChld. \exists hasChld. female$

In \mathcal{GF} :

 $\forall x \text{ grf-wth-gdtrs}(x)
ightarrow \exists y ext{ hasChld}(x,y) \land \exists z ext{ hasChld}(y,z) \land \textit{female}(z)$

In \mathcal{FF} :

 $\forall x_1 \text{ grf-wth-gdtrs}(x_1) \rightarrow \exists x_2 \text{ hasChld}(x_1, x_2) \land \exists x_3 \text{ hasChld}(x_2, x_3) \land \textit{female}(x_3)$

Note that the Forward Guarded Fragment $\mathcal{FGF} := \mathcal{GF} \cap \mathcal{FF}$ also captures \mathcal{ALC} .

Bartosz "Bart" Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

• New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.

Bartosz "Bart" Bednarczyk Exploiting forwardness: Sat and Querying in FGF 5 / 8

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathsf{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathsf{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

 $\varphi_{\mathsf{loop}(R)}(x_1) = R(x_1, x_1).$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

 $\varphi_{\mathrm{tr}(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$

 $\varphi_{\mathsf{loop}(R)}(x_1) = R(x_1, x_1).$

 $\varphi_{\mathsf{inv}(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{tr(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3).$$

$$\varphi_{loop(R)}(x_1) = R(x_1, x_1).$$

$$\varphi_{inv(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$$

$$\varphi_{unique(A)} := \forall x_1 x_2 \ A(x_1) \land A(x_2) \to x_1 = x_2$$

not guarded!

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\begin{split} \varphi_{\mathrm{tr}(R)} &= \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3). \\ \varphi_{\mathrm{loop}(R)}(x_1) &= R(x_1, x_1). \\ \varphi_{\mathrm{inv}(S)=R} &:= \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1) \\ \varphi_{\mathrm{unique}(A)} &:= \forall x_1 x_2 \ \underbrace{A(x_1) \land A(x_2)}_{\mathrm{not guarded}!} \to x_1 = x_2 \\ \end{split}$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete.

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\begin{split} \varphi_{\mathrm{tr}(R)} &= \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \to R(x_1, x_3). \\ \varphi_{\mathrm{loop}(R)}(x_1) &= R(x_1, x_1). \\ \varphi_{\mathrm{inv}(S)=R} &:= \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1) \\ \varphi_{\mathrm{unique}(A)} &:= \forall x_1 x_2 \ \underbrace{A(x_1) \land A(x_2)}_{\mathrm{not guarded!}} \to x_1 = x_2 \end{split}$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete.

Harvesting from the results of Grädel and Bárány et al:

- New, arguably elegant logic \mathcal{FGF} over relational, equality-free signatures.
- \mathcal{FGF} cannot express "bad guys": transitivity, self-loops, nominals and inverses.

$$\varphi_{tr(R)} = \forall x_1 \forall x_2 \forall x_3 \ R(x_1, x_2) \land R(x_2, x_3) \rightarrow R(x_1, x_3).$$

$$\varphi_{loop(R)}(x_1) = R(x_1, x_1).$$

$$\varphi_{inv(S)=R} := \forall x_1 x_2 S(x_1, x_2) \leftrightarrow R(x_2, x_1)$$

$$\varphi_{unique(A)} := \forall x_1 x_2 \ \underline{A(x_1) \land A(x_2)}_{not \ guarded!} \rightarrow x_1 = x_2$$

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete.

Harvesting from the results of Grädel and Bárány et al:

Corollary

Data complexity of KB SAT is NP-compl and coNP-compl for querying. \mathcal{FGF} has FMP and is finitely-controllable.

5 / 8

Bartosz "Bart" Bednarczyk Exploiting forwardness: Sat and Querying in FGF

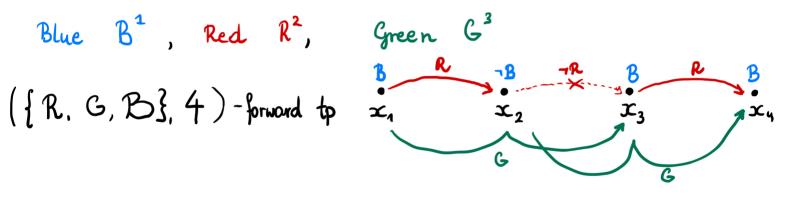
6 / 8

Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $\mathbb{R} \in \Sigma$ of arity $\ell = \operatorname{ar}(\mathbb{R}) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $\mathbb{R}(\vec{x}_{i...i+\ell-1})$ or $\neg \mathbb{R}(\vec{x}_{i...i+\ell-1})$.

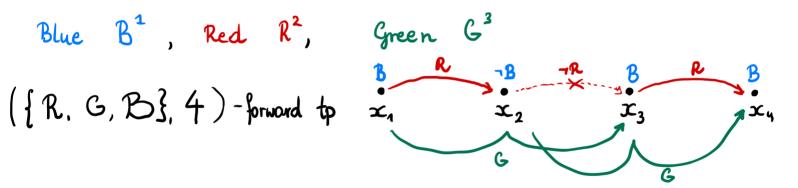
Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $\mathbb{R} \in \Sigma$ of arity $\ell = \operatorname{ar}(\mathbb{R}) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $\mathbb{R}(\vec{x}_{i...i+\ell-1})$ or $\neg \mathbb{R}(\vec{x}_{i...i+\ell-1})$.



Definition (Forward type)

A (Σ, n) -forward type is a conjunction of atoms with n free-variables $\vec{x}_{1...n}$, which for every relational symbol $R \in \Sigma$ of arity $\ell = ar(R) \leq n$ and every index $1 \leq i \leq n+1-\ell$ contains either $R(\vec{x}_{i...i+\ell-1})$ or $\neg R(\vec{x}_{i...i+\ell-1})$.



Lemma

The number of different (Σ, n) -types is $\leq 2^{|\Sigma| \cdot n^2}$. The number of conjuncts in each (Σ, n) -type is $\leq |\Sigma| \cdot n$

Bartosz "Bart" Bednarczyk

Exploiting forwardness: Sat and Querying in FGF

7 / 8

Definition (Higher-arity forests (HAFs))

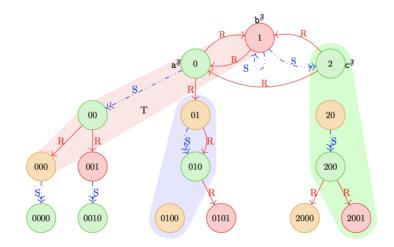
There are forests in which (higher-arity) edges link roots in arbitrary way but

other elements are connected in the level-by-level order.

Bartosz "Bart" Bednarczyk

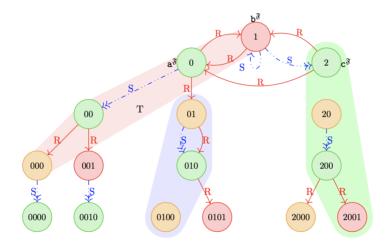
Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.



Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.

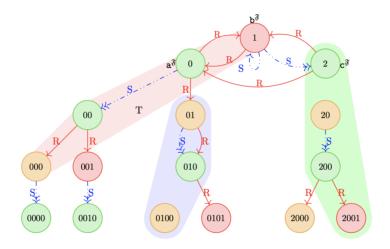


Lemma

Every satisfiable \mathcal{FGF} knowledge base has a HAF (counter)model.

Definition (Higher-arity forests (HAFs))

There are forests in which (higher-arity) edges link roots in arbitrary way but other elements are connected in the level-by-level order.



Lemma

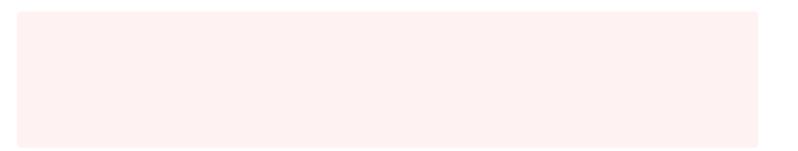
Every satisfiable \mathcal{FGF} knowledge base has a HAF (counter)model.

Theorem (B., JELIA'21)

Knowledge-base SAT for \mathcal{FGF} is ExpTIME-complete.

Bartosz "Bart" Bednarczyk

Exploiting forwardness: Sat and Querying in FGF



Forward GF = formulae guarded but kept forward

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete,

also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

Understand model theory of Ordered/Fluted/Forward Fragment of *FO*.
 i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

1. Understand model theory of Ordered/Fluted/Forward Fragment of FO.
 i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski
 Ongoing work with Reijo Jaakkola, University of Tampere

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

 Understand model theory of Ordered/Fluted/Forward Fragment of FO.
 i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
 Study FGF + I/O/Q.

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

 Understand model theory of Ordered/Fluted/Forward Fragment of *FO*.
 i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
 Study *FGF* + *I*/*O*/*Q*.

3. Study $\mathcal{FGF}+\mu$ or $\mathcal{FGF}+S$. Seem to behave nicer than $\mathcal{GF}+TG$

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

Open problems and future research?

- **1.** Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .
- i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
- **2.** Study $\mathcal{FGF} + \mathcal{I}/\mathcal{O}/\mathcal{Q}$.
- **3.** Study $\mathcal{FGF}+\mu$ or $\mathcal{FGF}+S$. Seem to behave nicer than $\mathcal{GF}+TG$
- 4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.

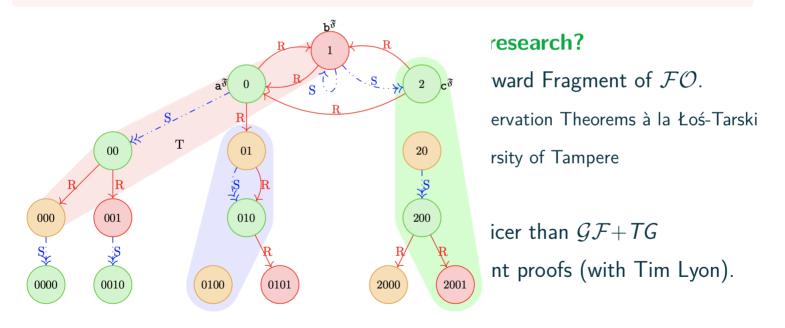
Open problems and future research?

- **1.** Understand model theory of Ordered/Fluted/Forward Fragment of \mathcal{FO} .
- i.e. E-F Games, Craig Interpolation, Beth Definability, Preservation Theorems à la Łoś-Tarski Ongoing work with Reijo Jaakkola, University of Tampere
- **2.** Study $\mathcal{FGF} + \mathcal{I}/\mathcal{O}/\mathcal{Q}$.
- **3.** Study $\mathcal{FGF}+\mu$ or $\mathcal{FGF}+S$. Seem to behave nicer than $\mathcal{GF}+TG$
- 4. Effective algorithms, e.g. resolution-based/sequent proofs (with Tim Lyon).
- 5. Forward TGDs (with Piotr Nalewaja).

Forward GF = formulae guarded but kept forward

Theorem (B., JELIA 2021)

Knowledge-base SAT and CQ entailment for \mathcal{FGF} is EXPTIME-complete, also in the finite. Data complexity (co)NP-complete. FMP + Fin-Control.



Thanks for attention!

Bartosz "Bart" Bednarczyk