Worst-Case Optimal Querying of Very Expressive Description Logics with Path Expressions and Succinct Counting

Bartosz Bednarczyk & Sebastian Rudolph

firstname.lastname@tu-dresden.de

Technische Universität Dresden and University of Wrocław

IJCAI 2019 Macau, August 15th, 2019

Running example $(\mathcal{ZOIQ} \text{ KB})$

Database

HasParent (Heracles, Zeus) HasParent (Perseus, Zeus) male (Zeus) deity (Zeus) mortal (Alcmene)

Knowledge

Bartosz Bednarczyk and Sebastian Rudolph: Querying 201Q with P2QPRs

Running example $(\mathcal{ZOIQ} \text{ KB})$

Database

HasParent (Heracles, Zeus) HasParent (Perseus, Zeus) male (Zeus) deity (Zeus) mortal (Alcmene)

 $\begin{array}{cccc} mortal &\sqsubseteq &\neg deity \\ &\top &\sqsubseteq & \exists HasFather.male \sqcap \exists HasMother.female \\ HasParent &\equiv & HasMother \cup HasFather \\ \forall HasParent.mortal &\sqsubseteq & mortal \\ & & deity &\sqsubseteq & \forall HasParent^*.deity \end{array}$

Positive 2-Way Regular Path Query

 $\exists x, y, z$ (HasParent^{*} \circ HasParent^{-*})(x, y) \wedge HasParent(z, x) \wedge HasParent(z, y)

x and y are relatives with a common children z

Positive 2-Way Regular Path Query

 $\exists x, y, z \ \underbrace{(HasParent^* \circ HasParent^{-*})(x, y) \land HasParent(z, x) \land HasParent(z, y)}_{x \ and \ y \ are \ relatives \ with \ a \ common \ children \ z}$

An example match π in a model \mathcal{I} :

$$\pi(\mathbf{x}) = \text{Amphitrite}^{\mathcal{I}}$$
 $\pi(\mathbf{y}) = \text{Poseidon}^{\mathcal{I}}$ $\pi(\mathbf{z}) = \text{Triton}^{\mathcal{I}}$

3 / 12

Bartosz Bednarczyk and Sebastian Rudolph: Querying ZOIQ with P2QPRs

 \blacksquare Unary concepts: male, diety, \neg mortal + a little more

- \blacksquare Unary concepts: male, diety, \neg mortal + a little more
- Simple roles: HasSon,

- Unary concepts: male, diety, \neg mortal + a little more
- \blacksquare Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists \text{HasFather.male}$

- Unary concepts: male, diety, ¬mortal + a little more
- \blacksquare Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists \text{HasFather.male}$
- Boolean role combinations b: HasParent \equiv HasMom \cup HasDad

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists$ HasFather.male
- Boolean role combinations b: $HasParent \equiv HasMom \cup HasDad$
- Regular expressions reg: Relatives \equiv HasParent^{*} \circ HasParent^{-*}

An example logic employing all these features is called \mathcal{Z} .

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists$ HasFather.male
- Boolean role combinations b: $HasParent \equiv HasMom \cup HasDad$
- Regular expressions reg: Relatives \equiv HasParent^{*} \circ HasParent^{-*}

An example logic employing all these features is called \mathcal{Z} .

Inverses \mathcal{I} : HasChildren \equiv HasParent⁻

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists$ HasFather.male
- Boolean role combinations b: $HasParent \equiv HasMom \cup HasDad$
- Regular expressions reg: Relatives \equiv HasParent^{*} \circ HasParent^{-*}

An example logic employing all these features is called \mathcal{Z} .

- Inverses \mathcal{I} : HasChildren \equiv HasParent⁻
- Nominals (constants) \mathcal{O} : {Zeus}

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists$ HasFather.male
- Boolean role combinations b: HasParent \equiv HasMom \cup HasDad
- Regular expressions reg: Relatives \equiv HasParent^{*} \circ HasParent^{-*}

An example logic employing all these features is called \mathcal{Z} .

- Inverses \mathcal{I} : HasChildren \equiv HasParent⁻
- Nominals (constants) \mathcal{O} : {Zeus}
- Counting Q: {Zeus} \sqsubseteq (≥ 100 HasChildren). \top

- Unary concepts: male, diety, ¬mortal + a little more
- Simple roles: HasSon, Quantifiers: $\top \sqsubseteq \exists$ HasFather.male
- Boolean role combinations b: $HasParent \equiv HasMom \cup HasDad$
- Regular expressions reg: Relatives \equiv HasParent^{*} \circ HasParent^{-*}

An example logic employing all these features is called \mathcal{Z} .

- Inverses \mathcal{I} : HasChildren \equiv HasParent⁻
- Nominals (constants) \mathcal{O} : {Zeus}
- Counting Q: {Zeus} \sqsubseteq (≥ 100 HasChildren). \top

		Extensions	of	\mathcal{Z}
--	--	------------	----	---------------

Even more expressive logics: $\mathcal{ZIQ}, \mathcal{ZOQ}$ and \mathcal{ZOI}

Quasi-forest model property (QFMP)

Quasi-forest model property (QFMP)

Bartosz Bednarczyk and Sebastian Rudolph: Querying ZOIQ with P2QPRs

Querying \mathcal{Z} with P2RPQs (existing results)

P2RPQ entailment for \mathcal{Z} family [Calvanese et al, IJCAI'09]

Testing P2RPQ entailment for ZIQ, ZOQ, ZOI can be done in 3ExpTime (2ExpTime-c. under unary encoding).

Querying \mathcal{Z} with P2RPQs (existing results)

P2RPQ entailment for \mathcal{Z} family [Calvanese et al, IJCAI'09] Testing P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ can be done in 3ExpTime (2ExpTime-c. under unary encoding).

- Quite complicated...
- Heavy machinery on automata theory...

P2RPQ entailment for \mathcal{Z} family [Calvanese et al, IJCAI'09]

Testing P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ can be done in 3ExpTime (2ExpTime-c. under unary encoding).

P2RPQ entailment R. 7 family [C + anese et al, IJCAI'09]

Testing P2RPQ entailment ZIQ, ZOQ, ZOI can be done in 3ExpTime (2F a me-c. ... ber unary encoding).

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c, even under binary encoding. Moreover once the number of atoms in the query is bounded, entailment is in ExpTime.

P2RPQ entailment to 7 family [C] unese et al, IJCAI'09] -Testing P2RPQ entailment ZIQ, ZOQ, ZOI can be

done in 3ExpTime (2F _______ inter-c. u. br unary encoding).

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c, even under binary encoding. Moreover once the number of atoms in the query is bounded, entailment is in ExpTime.

- Reduction to satisfiability (works under binary enc)
- P2RPQ version of so-called "rolling-up" technique used for CQs
- Simulate automata on quasi-forest-models = Match calculus

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

• For simplicity we assume that the input query q is C2RPQ

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

- For simplicity we assume that the input query q is C2RPQ
- \blacksquare q can be represented as a set of NFAs without $\varepsilon\text{-transitions}$

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

- For simplicity we assume that the input query q is C2RPQ
- \blacksquare q can be represented as a set of NFAs without $\varepsilon\text{-transitions}$
- We annotate models \mathcal{I} with Q_M predicates (rolling-up):
 - $\hfill\square\ensuremath{\ \ Q_M}$ indicate that there is a match M in $\mathcal I$

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

- For simplicity we assume that the input query q is C2RPQ
- \blacksquare q can be represented as a set of NFAs without $\varepsilon\text{-transitions}$
- We annotate models \mathcal{I} with Q_M predicates (rolling-up):
 - $\hfill\square$ Q_M indicate that there is a match M in $\mathcal I$
 - $\hfill\square$ basically we simulate automaton on quasi-forest models.

Generated with match calculus

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

• $\mathcal{K} \models q$ iff $\mathcal{K}_{\neg q}$ is unsatisfiable

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

K ⊨ q iff *K*_{¬q} is unsatisfiable
Obtained KB *K*_{¬q} is only exp in |q| and poly in |*K*|

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c.

- $\mathcal{K} \models q$ iff $\mathcal{K}_{\neg q}$ is unsatisfiable
- Obtained KB $\mathcal{K}_{\neg q}$ is only exp in |q| and poly in $|\mathcal{K}|$
- Testing unsatisfiability can be done in ExpTime w.r.t $|\mathcal{K}_{\neg q}|$

P2RPQ entailment for \mathcal{Z} family [this paper!]

P2RPQ entailment for $\mathcal{ZIQ}, \mathcal{ZOQ}, \mathcal{ZOI}$ is 2ExpTime-c.

- $\mathcal{K} \models q$ iff $\mathcal{K}_{\neg q}$ is unsatisfiable
- Obtained KB $\mathcal{K}_{\neg q}$ is only exp in |q| and poly in $|\mathcal{K}|$
- Testing unsatisfiability can be done in ExpTime w.r.t $|\mathcal{K}_{\neg q}|$
- Thus in 2ExpTime w.r.t. $|\mathcal{K}| + |\mathbf{q}|$

Applications to other logics

We presented a reduction form \mathcal{GC}^2 to \mathcal{ZIQ} , hence we conclude:

Positive regular path queries in \mathcal{GC}^2

P2RPQ entailment for \mathcal{GC}^2 is 2ExpTime-complete.

Applications to other logics

We presented a reduction form \mathcal{GC}^2 to \mathcal{ZIQ} , hence we conclude:

Positive regular path queries in \mathcal{GC}^2

P2RPQ entailment for \mathcal{GC}^2 is 2ExpTime-complete.

By reusing exponential reduction from $S\mathcal{R}$ to \mathcal{Z} :

Positive regular path queries in \mathcal{SR} family

P2RPQ entailment for SR(OI, IQ, OQ) is in 3ExpTime.

Applications to query containment

Query containment

Testing query containment $\mathcal{K} \models q \subseteq q'$ is: in 2ExpTime for:

- \mathcal{K} in \mathcal{ZOQ} or \mathcal{ZOI} and $q, q' \in P2RPQ$
- \mathcal{K} in \mathcal{ZIQ} and $q \in P2RPQ$, $q' \in CQ$ and in 3ExpTime for:
- \mathcal{K} in \mathcal{SROQ} or \mathcal{SROI} and $q, q' \in P2RPQ$
- \mathcal{K} in \mathcal{SRIQ} and $q \in P2RPQ$, $q' \in CQ$

Applications to query containment

Query containment

Testing query containment $\mathcal{K} \models q \subseteq q'$ is: in 2ExpTime for:

- \mathcal{K} in \mathcal{ZOQ} or \mathcal{ZOI} and $q, q' \in P2RPQ$
- \mathcal{K} in \mathcal{ZIQ} and $q \in P2RPQ$, $q' \in CQ$ and in 3ExpTime for:
- \mathcal{K} in \mathcal{SROQ} or \mathcal{SROI} and $q, q' \in P2RPQ$
- \mathcal{K} in \mathcal{SRIQ} and $q \in P2RPQ$, $q' \in CQ$

Moreover once the number of the atoms from the query is bounded complexities of each problem drops by one exponential.

Conclusions and open problems

Our results

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c + P2RPQ entailment for SRIQ, SROQ, SROI in 3Exp + P2RPQ containment in 2ExpTime + One exp less for all problems when $\#atoms(q) \leq Const$.

Open problems

Conclusions and open problems

Our results

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c + P2RPQ entailment for SRIQ, SROQ, SROI in 3Exp + P2RPQ containment in 2ExpTime + One exp less for all problems when $\#atoms(q) \leq Const$.

Open problems

- Data complexity?
- Finite query entailment?
- Sat of ZOIQ?

Conclusions and open problems

Our results

P2RPQ entailment for ZIQ, ZOQ, ZOI is 2ExpTime-c + P2RPQ entailment for SRIQ, SROQ, SROI in 3Exp + P2RPQ containment in 2ExpTime + One exp less for all problems when $\#atoms(q) \leq Const$.

Open problems

- Data complexity?
- Finite query entailment?
- Sat of ZOIQ?

Bartosz Bednarczyk and Sebastian Rudolph: Querying ZOIQ with P2QPRs