A Framework for Reasoning about Dynamic Axioms in Description Logics

Bartosz Bednarczyk, Stéphane Demri, Alessio Mansutti

TU DRESDEN & UNIVERSITY OF WROCŁAW, CNRS & ENS PARIS-SACLAY

European Research Council

Established by the European Commission

Running example: basketball teams and (possibly injured) players

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 $\exists has Injury . Injury \sqsubseteq Player$

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 \exists has Injury . Injury \sqsubseteq Player \exists is Drafted . Team \sqsubset Player

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 $\exists has Injury . Injury \sqsubseteq Player$

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists has Injury . Injury $\sqcap \exists$ is Drafted . Team $\sqsubseteq \bot$

It essentially states that no injured player can be drafted by a team.

CC ①

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists has Injury . Injury $\sqcap \exists$ is Drafted . Team $\sqsubseteq \bot$

It essentially states that no injured player can be drafted by a team.

Usually knowledge bases are static.

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists has Injury . Injury $\sqcap \exists$ is Drafted . Team $\sqsubseteq \bot$

It essentially states that no injured player can be drafted by a team.

Usually knowledge bases are static.

How to update them? And how to reason about updates?

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists has Injury . Injury $\sqcap \exists$ is Drafted . Team $\sqsubseteq \bot$

It essentially states that no injured player can be drafted by a team.

Usually knowledge bases are static.

How to update them? And how to reason about updates?

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

• Liu et al. Updating Description Logic ABoxes, KR'06

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

Focus was mostly on updating ABoxes!

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

Focus was mostly on updating ABoxes!

What if interpretations changes too?

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

Focus was mostly on updating ABoxes!

What if interpretations changes too?

Our main goal: how to specify the evolution of ABoxes and TBoxes

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

Focus was mostly on updating ABoxes!

What if interpretations changes too?

Our main goal: how to specify the evolution of ABoxes and TBoxes when the current interpretation is updated?

- Liu et al. Updating Description Logic ABoxes, KR'06
- De Giacomo et al. On the update of DL ontologies at the instance level, AAAI'06
- Drescher et al. Putting ABox updates into action, FroCoS'09

Focus was mostly on updating ABoxes!

What if interpretations changes too?

Our main goal: how to specify the evolution of ABoxes and TBoxes when the current interpretation is updated?

We propose a new framework based on separation logics!

Let ${\mathbb I}$ be the class of all interpretations.

Let \mathbb{I} be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

Let $\mathbb I$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Let ${\mathbb I}$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Let ${\mathbb I}$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Now we are ready to introduce Dynamic Axioms:

Let ${\mathbb I}$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Now we are ready to introduce Dynamic Axioms:

$$\mathbb{U}, \mathbb{V} ::= \underbrace{\top \mid C(\mathbf{a}) \mid r(\mathbf{a}, \mathbf{b}) \mid C \sqsubseteq D}_{\text{standard DL axioms}} \mid \mathbb{U} * \mathbb{V} \mid \mathbb{U} \twoheadrightarrow \mathbb{V} \underbrace{\mid \neg \mathbb{U} \mid \mathbb{U} \sqcap \mathbb{V}}_{\text{boolean operations on axioms}}$$

Let ${\mathbb I}$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Now we are ready to introduce Dynamic Axioms:

$$\mathbb{U}, \mathbb{V} ::= \underbrace{\top \mid C(a) \mid r(a, b) \mid C \sqsubseteq D}_{\text{standard DL axioms}} \mid \mathbb{U} * \mathbb{V} \mid \mathbb{U} \twoheadrightarrow \mathbb{V} \underbrace{\mid \neg \mathbb{U} \mid \mathbb{U} \sqcap \mathbb{V}}_{\text{boolean operations on axioms}}$$

• $\mathcal{I} \models \mathbb{U}_1 * \mathbb{U}_2$ iff there are $\mathcal{I}_1, \mathcal{I}_2$ such that $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$ s.t. $\mathcal{I}_i \models \mathbb{U}_i$

Let ${\mathbb I}$ be the class of all interpretations.

We take a composition operator $\oplus:\mathbb{I}\times\mathbb{I}\to\mathbb{I}$ to be any AC operator.

In our scenario \oplus decomposes the roles of interpretations as follows:

Now we are ready to introduce Dynamic Axioms:

$$\mathbb{U}, \mathbb{V} ::= \underbrace{\top \mid C(a) \mid r(a, b) \mid C \sqsubseteq D}_{\text{standard DL axioms}} \mid \mathbb{U} * \mathbb{V} \mid \mathbb{U} \twoheadrightarrow \mathbb{V} \underbrace{\mid \neg \mathbb{U} \mid \mathbb{U} \sqcap \mathbb{V}}_{\text{boolean operations on axioms}}$$

- $\mathcal{I} \models \mathbb{U}_1 * \mathbb{U}_2$ iff there are $\mathcal{I}_1, \mathcal{I}_2$ such that $\mathcal{I} = \mathcal{I}_1 \oplus \mathcal{I}_2$ s.t. $\mathcal{I}_i \models \mathbb{U}_i$
- $\mathcal{I} \models \mathbb{U}_1 \twoheadrightarrow \mathbb{U}_2$ iff there is \mathcal{J} such that $\mathcal{J} \models \mathbb{U}_1$ and $\mathcal{I} \oplus \mathcal{J} \models \mathbb{U}_2$

Running example: recall ${\cal K}$

Knowledge (TBox)

Database (ABox)

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

CC ①

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Knowledge (TBox)

Database (ABox)

isDrafted(Zion, Pelicans)

 \exists hasInjury.Injury \sqsubseteq Player

 $\exists isDrafted.Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

Consider the dynamic axiom:

CC ①

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Knowledge (TBox)

Database (ABox)

isDrafted(Zion, Pelicans)

 $\exists has Injury . Injury \sqsubseteq Player$

 $\exists isDrafted. Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

Consider the dynamic axiom: $\mathbb{U} = \top * (\top \twoheadrightarrow isDrafted(Zion, Pelicans))$

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Knowledge (TBox)

Database (ABox)

isDrafted(Zion, Pelicans)

 $\exists has Injury . Injury \sqsubseteq Player$

 $\exists isDrafted. Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

Consider the dynamic axiom: $\mathbb{U} = \top * (\top \twoheadrightarrow isDrafted(Zion, Pelicans))$

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Knowledge (TBox)

Database (ABox)

isDrafted(Zion, Pelicans)

 $\exists has Injury . Injury \sqsubseteq Player$

 $\exists isDrafted. Team \sqsubseteq Player$

 \exists hasInjury.Injury $\sqcap \exists$ isDrafted.Team $\sqsubseteq \bot$

Consider the dynamic axiom: $\mathbb{U} = \top * (\top \twoheadrightarrow isDrafted(Zion, Pelicans))$

 $\mathcal{K} \cup \mathbb{U}$ is satisfiable iff there is an evolution where Zion is drafted by Pelicans.

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

• In this work we focused on the consistency problem only

- In this work we focused on the consistency problem only
- \bullet We consider two logics: \mathcal{ALC} and \mathcal{EL}

- In this work we focused on the consistency problem only
- \bullet We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

- In this work we focused on the consistency problem only
- \bullet We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

- In this work we focused on the consistency problem only
- We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

- In this work we focused on the consistency problem only
- We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

- In this work we focused on the consistency problem only
- We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

- In this work we focused on the consistency problem only
- We consider two logics: \mathcal{ALC} and \mathcal{EL}
- We distinguish the cases of dynamic axioms (DAs) and negation-free DA

pos-EL	pos-ALC	\mathcal{EL}
		\mathcal{ALC}
in PTIME	ExpTime-compl	Undecidable
proof system	translation to ALCOb	reduction via $\mathcal{ALC}+$
		$r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq s$

Check the paper for more details!

B. Bednarczyk, S. Demri, A. Mansutti

A Framework for Reasoning about Dynamic Axioms in DLs $\,$ 5 $\,/\,$ 5