On Classical Decidable Logics Extended with Percentage Quantifiers and Arithmetics

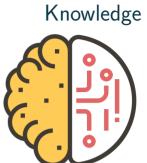
December 15–17, 2021, FSTTCS 2021 (virtual)

Bartosz "Bart" Bednarczyk, Anna Pacanowska, Maja Orłowska, Tony Tan

TU Dresden & University of Wrocław & National Taiwan University

Database

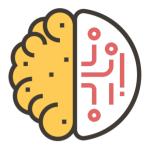
Database



Citizen(Bart)

Database

Knowledge



Citizen(Bart)
votedFor(Bart, XYZ)

Database

Knowledge

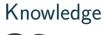
Citizen(Bart) votedFor(Bart, XYZ)

ŝ

Database

Citizen(Bart)
votedFor(Bart, XYZ)

ŝ





$\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Database

We formalise the concept of a *winner* with:

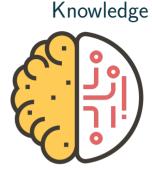
Citizen(Bart) votedFor(Bart, XYZ)

 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Database

We formalise the concept of a *winner* with:

winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen



Citizen(Bart)
votedFor(Bart, XYZ)

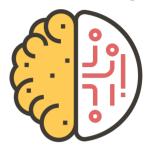
 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Database

We formalise the concept of a *winner* with: winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen

Must-have: inverses of relations + percentages

Knowledge



Citizen(Bart) votedFor(Bart, XYZ)

 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

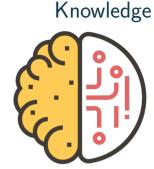
Database

We formalise the concept of a *winner* with:

winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen

Must-have: inverses of relations + percentages

No decidable logic available 😮



 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Citizen(Bart) votedFor(Bart, XYZ)

Database

Citizen(Bart)

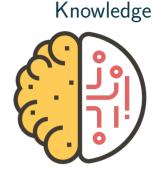
votedFor(Bart, XYZ)

We formalise the concept of a *winner* with:

winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen

Must-have: inverses of relations + percentages

No decidable logic available 😮



 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Related work

Database

Citizen(Bart)

votedFor(Bart, XYZ)

We formalise the concept of a *winner* with:

winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen

Must-have: inverses of relations + percentages

No decidable logic available 😮

Knowledge

 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Related work

- 1. Presburger Modal Logic [Demri&Lugiez'2010] 🙂
- **2.** ALC with Expressive Cardinality Constraints (ALCSCC) [Baader'2017] \bigcirc
- 3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] 🙂

Database

Citizen(Bart)

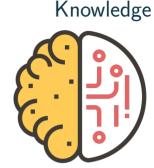
votedFor(Bart, XYZ)

We formalise the concept of a *winner* with:

winner \equiv Citizen \sqcap (> 50%)votedFor⁻.Citizen

Must-have: inverses of relations + percentages

No decidable logic available 😮



 $\textit{Citizen} \sqsubseteq \exists \textit{votedFor}.\textit{Citizen}$

Related work

- 1. Presburger Modal Logic [Demri&Lugiez'2010] 🙂
- **2.** ALC with Expressive Cardinality Constraints (ALCSCC) [Baader'2017] \bigcirc
- 3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] 🙂
- **4.** $ALCISCC^{++}$ [Baader et. al'2020] C or FO² with Härtig quantifier [Grädel et al.'1999] C

We focus on classical decidable fragments: ${\rm FO}^2$ and ${\rm GF}$

We focus on classical decidable fragments: ${\rm FO}^2$ and ${\rm GF}$

1. FO^2 is the fragment of FO, in which we can only use the variables x and y

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NEXPTIME-complete SAT

1. FO^2 is the fragment of FO, in which we can only use the variables x and y

- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$

1. FO² is the fragment of FO, in which we can only use the variables x and y

• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT

• not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- **2.** The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.
- also has FMP, 2ExpTime-complete SAT [Grädel 1999]

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.
- also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \to bkpr(y))$

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NEXPTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.
- also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

Coexample: Every artist admires every beekeeper

 $\forall x \; (artst(x) \rightarrow \forall y \; (bkpr(y) \rightarrow adm(x, y)))$

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NEXPTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.
- also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

Coexample: Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

Both FO² and GF capture ALCI but cannot express percentages.

- **1.** FO^2 is the fragment of FO, in which we can only use the variables x and y
- has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTIME-complete SAT
- not so trivial as we can reuse variables, e.g. $\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$
- 2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
- $\exists \vec{y} \ \alpha(\vec{x}, \vec{y}) \land \varphi(\vec{x}, \vec{y}), \forall \vec{y} \ \alpha(\vec{x}, \vec{y}) \rightarrow \varphi(\vec{x}, \vec{y}) \text{guard must cover free variables of } \varphi$.
- also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers

 $\exists x \ artst(x) \land \forall y \ (adm(x, y) \rightarrow bkpr(y))$

Coexample: Every artist admires every beekeeper

 $\forall x (artst(x) \rightarrow \forall y (bkpr(y) \rightarrow adm(x, y)))$

Both FO² and GF capture ALCI but cannot express percentages.

So let's add them! Why not?

1. Global percentage quantifiers $\exists^{=k} x.\varphi$, $\exists^{>k} x.\varphi$, $\exists^{<k} x.\varphi$ count globally

1. Global percentage quantifiers $\exists^{=k\%}x.\varphi$, $\exists^{>k\%}x.\varphi$, $\exists^{<k\%}x.\varphi$ count globally $\mathfrak{A}, \vec{a} \models \exists^{=k\%}x.\varphi$ iff $|d \in A : \mathfrak{A}, \vec{a} \models \varphi(d)| = \frac{k}{100}|A|$

1. Global percentage quantifiers $\exists^{=k\%}x.\varphi, \exists^{>k\%}x.\varphi, \exists^{<k\%}x.\varphi$ count globally $\mathfrak{A}, \vec{a} \models \exists^{=k\%}x.\varphi$ iff $|d \in A : \mathfrak{A}, \vec{a} \models \varphi(d)| = \frac{k}{100}|A|$

2. Local percentage quantifiers $\exists_{R}^{=k\%}x.\varphi$, $\exists_{R}^{>k\%}x.\varphi$, $\exists_{R}^{<k\%}x.\varphi$ count successors

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors

 $\mathfrak{A}, \vec{\mathrm{a}} \models \exists_{\mathrm{R}}^{=k\%} x.\varphi \text{ iff } |\mathrm{d} \in \mathcal{A} : (\vec{\mathrm{a}}, \mathrm{d}) \in \mathrm{R}^{\mathfrak{A}} \text{ and } \mathfrak{A}, \vec{\mathrm{a}} \models \varphi(\mathrm{d})| = \frac{k}{100} |\mathrm{d} \in \mathcal{A} : (\vec{\mathrm{a}}, \mathrm{d}) \in \mathrm{R}^{\mathfrak{A}}|$

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |𝑌 ∈ 𝑌 : 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100|A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100|d ∈ A : (𝔅, d) ∈ R^𝔅| Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100 |d ∈ A : (𝔅, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |𝑌 ∈ 𝑌 : 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{≥k%}_Rx.φ, ∃^{≤k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

• FINSAT for $FO^2 + \%$ is undecidable under any semantics.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |𝑌 ∈ 𝑌 : 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(𝑌)| = k/100 |𝑌 ∈ 𝑌 : (𝔅, 𝑌) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, a ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, a ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, a ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (a, d) ∈ R^𝔅 and 𝔅, a ⊨ φ(d)| = k/100 |d ∈ A : (a, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on $GF^2 := FO^2 \cap GF$.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100 |d ∈ A : (𝔅, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on $GF^2 := FO^2 \cap GF$.

• FINSAT for GF^2 + global % is undecidable.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100 |d ∈ A : (𝔅, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on $GF^2 := FO^2 \cap GF$.

- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100 |d ∈ A : (𝔅, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on $GF^2 := FO^2 \cap GF$.

- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

Global percentage quantifiers ∃^{=k%}x.φ, ∃^{>k%}x.φ, ∃^{<k%}x.φ count globally 𝔅, 𝔅 ⊨ ∃^{=k%}x.φ iff |d ∈ A : 𝔅, 𝔅 ⊨ φ(d)| = k/100 |A| Local percentage quantifiers ∃^{=k%}_Rx.φ, ∃^{>k%}_Rx.φ, ∃^{<k%}_Rx.φ count successors 𝔅, 𝔅 ⊨ ∃^{=k%}_Rx.φ iff |d ∈ A : (𝔅, d) ∈ R^𝔅 and 𝔅, 𝔅 ⊨ φ(d)| = k/100 |d ∈ A : (𝔅, d) ∈ R^𝔅|

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our results

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on $GF^2 := FO^2 \cap GF$.

- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

Our positive results hold even for Presburger's arithmetic (FO[+]) constraints on successors.

1. Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.

- **1.** Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$

- **1.** Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.

- **1.** Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.
- Reduction from the Hilbert's 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI'20])

- **1.** Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.
- Reduction from the Hilbert's 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI'20])

- **1.** Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.
- Reduction from the Hilbert's 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI'20])

2. Undecidability of GF with local %.

- 1. Undecidability of $FO^2 + \%$ and $GF^2 + global \%$.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.
- Reduction from the Hilbert's 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI'20])
- **2.** Undecidability of GF with local %.
- GF³ + functional role is undecidable [Grädel&Otto&Rosen'1999].

- 1. Undecidability of $\mathsf{FO}^2+\%$ and GF^2+ global %.
- We can axiomatise universal roles: $\forall x \forall y \ \mathrm{R}(x, y)$
- So we can put dummy guards everywhere and the semantics of % doesn't matter.
- Reduction from the Hilbert's 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI'20])
- **2.** Undecidability of GF with local %.
- GF³ + functional role is undecidable [Grädel&Otto&Rosen'1999].
- We show how to enforce functionality with %.

1. EXPTIME-completeness of FinBranchSAT of GF^2 + local %.

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- APSPACE procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- APSPACE procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C^2 , i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".
- By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.

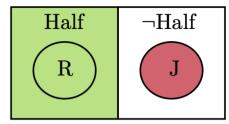
- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".
- By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
- Such (semi-)linear constraints can be computed (with huge blow-up) and described in C².

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C^2 , i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".
- By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
- Such (semi-)linear constraints can be computed (with huge blow-up) and described in C².

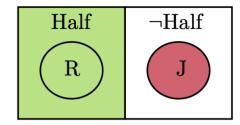
- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".
- By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
- Such (semi-)linear constraints can be computed (with huge blow-up) and described in C².
- 3. Decidability of CQ query entailment

- **1.** EXPTIME-completeness of FinBranchSAT of GF^2 + local %.
- If there is a model then there is an *infinite* tree-like one with exponential branching.
- $\bullet~{\rm APSPACE}$ procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.
- **2.** Decidability of FINSAT of GF^2 + local %.
- Translate into C², i.e. the FO² with counting (NEXPTIME-compl. [Pratt-Hartmann'2005])
- Rewrite a formula into some simplified form (reduce nesting depth to \leq 2).
- Express local neighbourhood with Presburger formula over "types".
- By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
- Such (semi-)linear constraints can be computed (with huge blow-up) and described in C².
- 3. Decidability of CQ query entailment
- Exponential reduction to satisfiability, based on "pumping" from [Baader&B.&Rudolph, DL'2019].

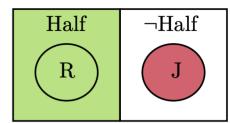
1. Call \mathfrak{A} (Half, R, J)-separated iff



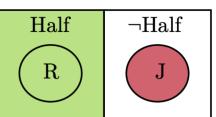
- 1. Call \mathfrak{A} (Half, R, J)-separated iff
- $\bullet\,$ The symbol $\operatorname{Half}\,$ labels exactly half of domain elements, and



- 1. Call \mathfrak{A} (Half, R, J)-separated iff
- $\bullet\,$ The symbol $\operatorname{Half}\,$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$

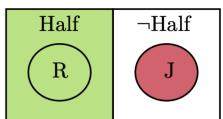


- 1. Call ${\mathfrak A}$ (Half, R, J)-separated iff
- $\bullet~\mbox{The symbol}~\mbox{Half}$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$

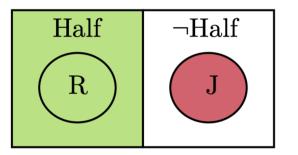


Over (Half, R, J)-separated \mathfrak{A} we can express $|\mathbb{R}^{\mathfrak{A}}| = |\mathbb{J}^{\mathfrak{A}}|$.

- 1. Call ${\mathfrak A}$ (Half, R, J)-separated iff
- $\bullet\,$ The symbol $\operatorname{Half}\,$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$

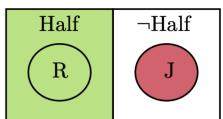


Over (Half, R, J)-separated \mathfrak{A} we can express $|R^{\mathfrak{A}}| = |J^{\mathfrak{A}}|$.

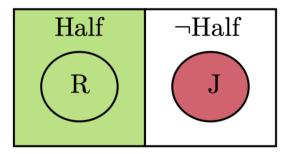


$$\models \varphi_{\text{eq}}(\text{Half}, \mathbf{R}, \mathbf{J}) := \exists^{=50\%} x \; (\text{Half}(x) \land \neg \mathbf{R}(x)) \lor \mathbf{J}(x)$$

- 1. Call \mathfrak{A} (Half, R, J)-separated iff
- $\bullet\,$ The symbol $\operatorname{Half}\,$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$



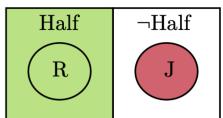
Over (Half, R, J)-separated \mathfrak{A} we can express $|R^{\mathfrak{A}}| = |J^{\mathfrak{A}}|$.



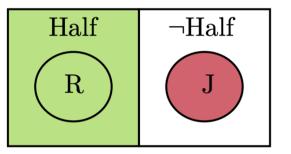
$$\models \varphi_{\rm eq}({\rm Half},{\rm R},{\rm J}) := \exists^{=50\%} x \; ({\rm Half}(x) \land \neg {\rm R}(x)) \lor {\rm J}(x)$$

Over (Half, R, J)-separated \mathfrak{A} we can express that $F : \mathbb{R}^{\mathfrak{A}} \to \mathbb{J}^{\mathfrak{A}}$ is functional.

- 1. Call \mathfrak{A} (Half, R, J)-separated iff
- $\bullet~\mbox{The symbol}~\mbox{Half}$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$

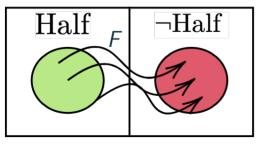


Over (Half, R, J)-separated \mathfrak{A} we can express $|R^{\mathfrak{A}}| = |J^{\mathfrak{A}}|$.



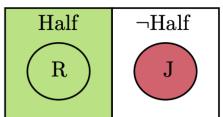
$$\models \varphi_{\text{eq}}(\text{Half}, \mathbf{R}, \mathbf{J}) := \exists^{=50\%} x \; (\text{Half}(x) \land \neg \mathbf{R}(x)) \lor \mathbf{J}(x)$$

Over (Half, R, J)-separated \mathfrak{A} we can express that $F : \mathbb{R}^{\mathfrak{A}} \to \mathbb{J}^{\mathfrak{A}}$ is functional.

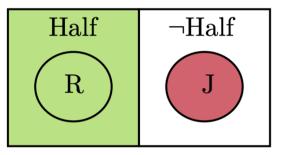


A glance at the undecidability proof of FO^2 + global %: Two tricks

- 1. Call \mathfrak{A} (Half, R, J)-separated iff
- $\bullet~\mbox{The symbol}~\mbox{Half}$ labels exactly half of domain elements, and
- \bullet the elements labelled with R and J are disjoint and in different halves of ${\mathfrak A}.$

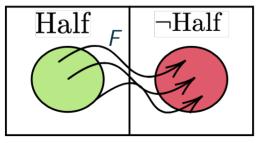


Over (Half, R, J)-separated \mathfrak{A} we can express $|R^{\mathfrak{A}}| = |J^{\mathfrak{A}}|$.

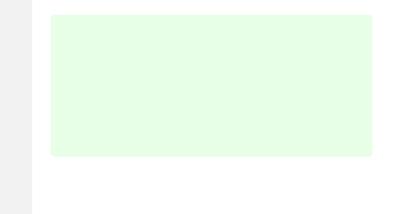


$$\models \varphi_{\text{eq}}(\text{Half}, \mathbf{R}, \mathbf{J}) := \exists^{=50\%} x \; (\text{Half}(x) \land \neg \mathbf{R}(x)) \lor \mathbf{J}(x)$$

Over (Half, R, J)-separated \mathfrak{A} we can express that $F : \mathbb{R}^{\mathfrak{A}} \to J^{\mathfrak{A}}$ is functional.



$$\models \forall x (\exists y F(x, y)) \rightarrow (\exists^{=50\%} y (\operatorname{Half}(y) \land x \neq y) \lor F(x, y))$$



Definition (Simplified Hilbert's 10th Problem (SHTP))

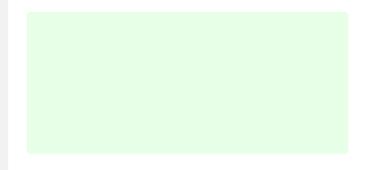
An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 $\blacktriangleright u = v + w,$

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .



Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

► *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

• Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |\mathcal{A}_{u}^{\mathfrak{A}}|$ is a solution of ε .

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

• Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |\mathcal{A}_{u}^{\mathfrak{A}}|$ is a solution of ε .

2. To encode u = 1 we write: $\exists x A_u(x) \land \forall x \forall y (A_u(x) \land A_u(y)) \rightarrow x = y$

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

► *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

- Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |A_u^{\mathfrak{A}}|$ is a solution of ε .
- **2.** To encode u = 1 we write: $\exists x A_u(x) \land \forall x \forall y \ (A_u(x) \land A_u(y)) \rightarrow x = y$
- **3.** To encode u = v + w we write:

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

- Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |A_u^{\mathfrak{A}}|$ is a solution of ε .
- **2.** To encode u = 1 we write: $\exists x A_u(x) \land \forall x \forall y \ (A_u(x) \land A_u(y)) \rightarrow x = y$
- **3.** To encode u = v + w we write:
- For a fresh Half we write $\exists = 50\% x$. Half(x), and that $A_u^{\mathfrak{A}} \subseteq \text{Half}^{\mathfrak{A}}$ as well as $A_v^{\mathfrak{A}} \cup A_w^{\mathfrak{A}} \subseteq A \setminus \text{Half}^{\mathfrak{A}}$

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 \blacktriangleright u = v + w,

 $\blacktriangleright u = v \cdot w.$

In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

- Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |A_u^{\mathfrak{A}}|$ is a solution of ε .
- **2.** To encode u = 1 we write: $\exists x A_u(x) \land \forall x \forall y \ (A_u(x) \land A_u(y)) \rightarrow x = y$
- **3.** To encode u = v + w we write:
- For a fresh Half we write $\exists = 50\% x$. Half(x), and that $A_u^{\mathfrak{A}} \subseteq \text{Half}^{\mathfrak{A}}$ as well as $A_v^{\mathfrak{A}} \cup A_w^{\mathfrak{A}} \subseteq A \setminus \text{Half}^{\mathfrak{A}}$
- Employ the trick with equicardinality of $A^{\mathfrak{A}}_{u}$ and $A^{\mathfrak{A}}_{v} \cup A^{\mathfrak{A}}_{w}$.

Definition (Simplified Hilbert's 10th Problem (SHTP))

An instance of SHTP is a system of equations ε of the form:

▶ *u* = 1,

 $\blacktriangleright u = v + w,$

 $\blacktriangleright u = v \cdot w.$

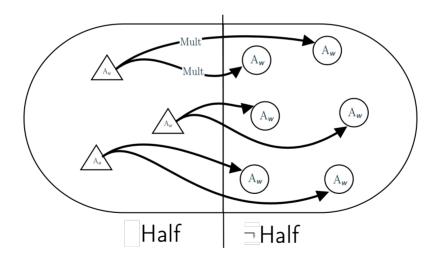
In SHTP we ask if there is a solution of ε over \mathbb{N} .

1. We use unary predicates A_u for each variable u from ε .

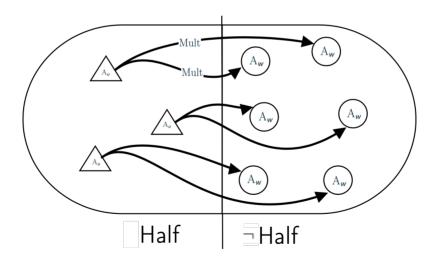
- Idea: $\mathfrak{A} \models \varphi_{\varepsilon}$ then $u \mapsto |A_u^{\mathfrak{A}}|$ is a solution of ε .
- **2.** To encode u = 1 we write: $\exists x A_u(x) \land \forall x \forall y \ (A_u(x) \land A_u(y)) \rightarrow x = y$
- **3.** To encode u = v + w we write:
- For a fresh Half we write $\exists = 50\% x$. Half(x), and that $A_u^{\mathfrak{A}} \subseteq \text{Half}^{\mathfrak{A}}$ as well as $A_v^{\mathfrak{A}} \cup A_w^{\mathfrak{A}} \subseteq A \setminus \text{Half}^{\mathfrak{A}}$
- Employ the trick with equicardinality of $A^{\mathfrak{A}}_{u}$ and $A^{\mathfrak{A}}_{v} \cup A^{\mathfrak{A}}_{w}$.
- 4. How to encode multiplication?

Bartosz "Bart" Bednarczyk Classical Logics with Percentages and/or Arithmetics

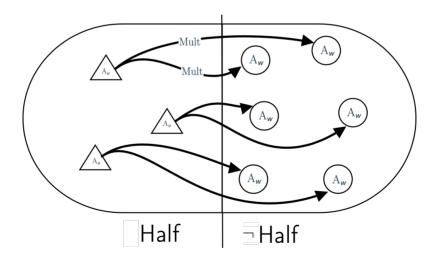
A glance at the undecidability proof of FO² + global %: Reduction Part II **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:



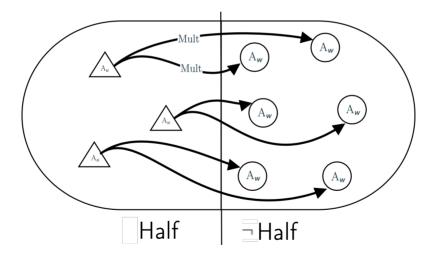
- **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:
- Introduce a fresh binary symbol Mult.



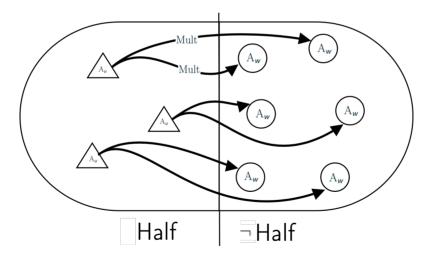
- **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:
- Introduce a fresh binary symbol Mult.
- $\operatorname{Mult}^{\mathfrak{A}}$ links every element from $\operatorname{A}^{\mathfrak{A}}_{u}$ to some elements from $\operatorname{A}^{\mathfrak{A}}_{w}$. (easy)



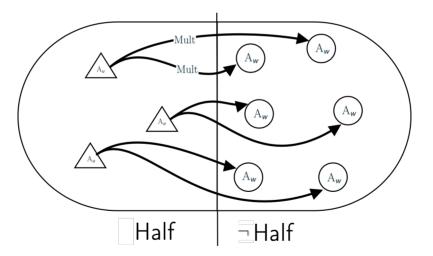
- **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:
- Introduce a fresh binary symbol Mult.
- $\operatorname{Mult}^{\mathfrak{A}}$ links every element from $\operatorname{A}^{\mathfrak{A}}_{u}$ to some elements from $\operatorname{A}^{\mathfrak{A}}_{w}$. (easy)
- Every element from $A_u^{\mathfrak{A}}$ has exactly $|A_v^{\mathfrak{A}}|$ Mult^{\mathfrak{A}}-successors (trick with equi-cardinality).



- **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:
- Introduce a fresh binary symbol Mult.
- $\operatorname{Mult}^{\mathfrak{A}}$ links every element from $\operatorname{A}^{\mathfrak{A}}_{u}$ to some elements from $\operatorname{A}^{\mathfrak{A}}_{w}$. (easy)
- Every element from $A_u^{\mathfrak{A}}$ has exactly $|A_v^{\mathfrak{A}}|$ Mult^{\mathfrak{A}}-successors (trick with equi-cardinality).
- The inverse of $Mult^{\mathfrak{A}}$ is functional (trick with functionality).



- **1.** To encode $u \cdot v = w$ (so $|A_u^{\mathfrak{A}}| \cdot |A_v^{\mathfrak{A}}| = |A_w^{\mathfrak{A}}|$) we write:
- Introduce a fresh binary symbol Mult.
- $\operatorname{Mult}^{\mathfrak{A}}$ links every element from $\operatorname{A}^{\mathfrak{A}}_{u}$ to some elements from $\operatorname{A}^{\mathfrak{A}}_{w}$. (easy)
- Every element from $A_u^{\mathfrak{A}}$ has exactly $|A_v^{\mathfrak{A}}|$ Mult^{\mathfrak{A}}-successors (trick with equi-cardinality).
- The inverse of $Mult^{\mathfrak{A}}$ is functional (trick with functionality).



By expressing every equation we obtain the desired $\varphi_{arepsilon}$ and conclude undecidability.

• FINSAT for $FO^2 + \%$ is undecidable under any semantics.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is ExpTIME-complete and CQ querying is 2ExpTIME-complete.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is ExpTIME-complete and CQ querying is 2ExpTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is ExpTIME-complete and CQ querying is 2ExpTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

Open problems

1. How to show ExpTIME upper bound for FINSAT of GF^2 + local %?

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

- 1. How to show ExpTIME upper bound for FINSAT of GF^2 + local %?
- 2. Can we improve our undecidability proofs to avoid the use of equality symbol?

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for $GF^2 + global \%$ is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

- 1. How to show ExpTIME upper bound for FINSAT of GF^2 + local %?
- 2. Can we improve our undecidability proofs to avoid the use of equality symbol?
- 3. Is there any other decidable logic that will stay decidable with arithmetics?

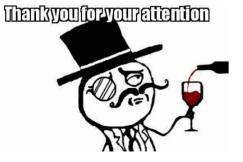
- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is ExpTIME-complete and CQ querying is 2ExpTIME-complete.
- FINSAT for GF^2 + local % is in 3NExpTIME + CQ querying in 4NExpTIME.

- 1. How to show ExpTIME upper bound for FINSAT of GF^2 + local %?
- 2. Can we improve our undecidability proofs to avoid the use of equality symbol?
- **3.** Is there any other decidable logic that will stay decidable with arithmetics?

- FINSAT for $FO^2 + \%$ is undecidable under any semantics.
- FINSAT for $GF^3 + \%$ is undecidable under local semantics.
- FINSAT for GF^2 + global % is undecidable.
- FINBranchSAT for GF^2 + local % is EXPTIME-complete and CQ querying is 2EXPTIME-complete.
- FINSAT for GF^2 + local % is in 3NEXPTIME + CQ querying in 4NEXPTIME.

Open problems

- 1. How to show ExpTIME upper bound for FINSAT of GF^2 + local %?
- 2. Can we improve our undecidability proofs to avoid the use of equality symbol?
- 3. Is there any other decidable logic that will stay decidable with arithmetics?



Any questions?