
On Classical Decidable Logics
Extended with Percentage Quantifiers and Arithmetics

December 15–17, 2021, FSTTCS 2021 (virtual)

Bartosz “Bart” Bednarczyk, Anna Pacanowska, Maja Orłowska, Tony Tan

TU Dresden & University of Wrocław & National Taiwan University

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases

Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)

votedFor(Bart, XYZ)
...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages

No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work

1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �

4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases
Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 1 / 9

https://icon-icons.com

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF

1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y

• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT

• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.

• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.

• also has FMP, 2ExpTime-complete SAT [Grädel 1999]
Example: Some artist admires only beekeepers

∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))
Coexample: Every artist admires every beekeeper

∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF
1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 2 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics

1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally
A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k

100|A|
2. Local percentage quantifiers ∃=k%

R x .ϕ, ∃>k%
R x .ϕ, ∃<k%

R x .ϕ count successors
A,~a |= ∃=k%

R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k
100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results

• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.

• FINSAT for GF + % is undecidable under any semantics.
Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.

• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.

• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.

• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.

• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics
1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally

A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k
100|A|

2. Local percentage quantifiers ∃=k%
R x .ϕ, ∃>k%

R x .ϕ, ∃<k%
R x .ϕ count successors

A,~a |= ∃=k%
R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k

100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 3 / 9

Overview of the proofs (undecidability)

1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.

• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)

• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.

• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.

• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].

• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (undecidability)
1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 4 / 9

Overview of the proofs (decidability)

1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.

• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.

• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.

• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])

• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).

• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.

• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.

• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment

• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Overview of the proofs (decidability)
1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
• Such (semi-)linear constraints can be computed (with huge blow-up) and described in C2.

3. Decidability of CQ query entailment
• Exponential reduction to satisfiability, based on “pumping” from [Baader&B.&Rudolph, DL’2019].

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 5 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks

1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff

• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and

• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F

|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks
1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 6 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.

• Idea: A |= ϕε then u 7→ |AA
u | is a solution of ε.

2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.

2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y

3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:

• For a fresh Half we write ∃=50%x .Half(x), and that AA
u ⊆ HalfA as well as AA

v ∪ AA
w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?
Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 7 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II

1. To encode u · v = w (so |AA
u | · |AA

v | = |AA
w |) we write:

• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:

• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:
• Introduce a fresh binary symbol Mult.

• MultA links every element from AA
u to some elements from AA

w . (easy)
• Every element from AA

u has exactly |AA
v | MultA-successors (trick with equi-cardinality).

• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:
• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:
• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).

• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:
• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II
1. To encode u · v = w (so |AA

u | · |AA
v | = |AA

w |) we write:
• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 8 / 9

Summary

• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.

• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.

• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.

• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.

• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems

1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?

2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?

3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

Summary
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?

Bartosz “Bart” Bednarczyk Classical Logics with Percentages and/or Arithmetics 9 / 9

