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winner ≡ Citizen u (> 50%)votedFor−.Citizen

Motivating example: election knowledge-bases

Database Knowledge

Icons downloaded from icon-icons.com by ©Rena Xiao and ©Eucalyp Studio (both under CC BY 4.0). No changes have been made.

Citizen(Bart)
votedFor(Bart, XYZ)

...

Citizen v ∃votedFor .Citizen

We formalise the concept of a winner with:

Must-have: inverses of relations + percentages
No decidable logic available D

Related work
1. Presburger Modal Logic [Demri&Lugiez’2010] �
2. ALC with Expressive Cardinality Constraints (ALCSCC) [Baader’2017] �
3. Coalgebraic Modal Logics [e.g. works of Schröder, Pattinson, Kupke and many more] �
4. ALCISCC++ [Baader et. al’2020] Ñ or FO2 with Härtig quantifier [Grädel et al.’1999] Ñ
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Both FO2 and GF capture ALCI but cannot express percentages.

We focus on classical decidable fragments: FO2 and GF

1. FO2 is the fragment of FO, in which we can only use the variables x and y
• has FMP and Exp-size model property [Grädel&Kolaitis&Vardi 1997], NExpTime-complete SAT
• not so trivial as we can reuse variables, e.g. ∀x∃y (E (x , y) ∧ ∃x (E (y , x) ∧ ∃y E (x , y)))

2. The guarded fragment GF of FO is obtained by relativising quantifiers by atoms.
• ∃~y α(~x ,~y)∧ϕ(~x ,~y),∀~y α(~x ,~y)→ϕ(~x ,~y) – guard must cover free variables of ϕ.
• also has FMP, 2ExpTime-complete SAT [Grädel 1999]

Example: Some artist admires only beekeepers
∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?
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∃x artst(x) ∧ ∀y (adm(x , y)→ bkpr(y))

Coexample: Every artist admires every beekeeper
∀x (artst(x)→ ∀y (bkpr(y)→ adm(x , y)))

So let’s add them! Why not?
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Note that global (resp. local) % make sense only over finite (resp. finite-branching) structures.

Our positive results hold even for Presburger’s arithmetic (FO[+]) constraints on successors.

Percentage quantifiers and the two semantics

1. Global percentage quantifiers ∃=k%x .ϕ, ∃>k%x .ϕ, ∃<k%x .ϕ count globally
A,~a |= ∃=k%x .ϕ iff |d ∈ A : A,~a |= ϕ(d)| = k

100|A|
2. Local percentage quantifiers ∃=k%

R x .ϕ, ∃>k%
R x .ϕ, ∃<k%

R x .ϕ count successors
A,~a |= ∃=k%

R x .ϕ iff |d ∈ A : (~a, d) ∈ RA and A,~a |= ϕ(d)| = k
100|d ∈ A : (~a, d) ∈ RA|

Our results
• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF + % is undecidable under any semantics.

Thus we meet in the middle and focus on GF2 := FO2 ∩ GF.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.
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Overview of the proofs (undecidability)

1. Undecidability of FO2 + % and GF2 + global %.
• We can axiomatise universal roles: ∀x∀y R(x , y)
• So we can put dummy guards everywhere and the semantics of % doesn’t matter.
• Reduction from the Hilbert’s 10th problem. (Similarly to [Baader&B.&Rudolph, ECAI’20])

2. Undecidability of GF with local %.
• GF3 + functional role is undecidable [Grädel&Otto&Rosen’1999].
• We show how to enforce functionality with %.
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Overview of the proofs (decidability)

1. ExpTime-completeness of FinBranchSAT of GF2 + local %.
• If there is a model then there is an infinite tree-like one with exponential branching.
• APspace procedure: guess the model step by step (a la tableaux) and stop after exp-many steps.

2. Decidability of FINSAT of GF2+ local %.
• Translate into C2, i.e. the FO2 with counting (NExpTime-compl. [Pratt-Hartmann’2005])
• Rewrite a formula into some simplified form (reduce nesting depth to ≤ 2).
• Express local neighbourhood with Presburger formula over “types”.
• By Ginsburg&Spanier: vectors satisfying Presburger formulae = semi-linear sets.
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Over (Half,R, J)-separated A we can express |RA| = |JA|.

Over (Half,R, J)-separated A we can express that F : RA → JA is functional.

A glance at the undecidability proof of FO2 + global %: Two tricks

1. Call A (Half,R, J)-separated iff
• The symbol Half labels exactly half of domain elements, and
• the elements labelled with R and J are disjoint and in different halves of A.

F
|= ∀x(∃yF (x , y))→ (∃=50%y (Half(y) ∧ x 6= y) ∨ F (x , y))
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Definition (Simplified Hilbert’s 10th Problem (SHTP))
An instance of SHTP is a system of equations ε of the form:
I u = 1,
I u = v + w ,
I u = v · w .

In SHTP we ask if there is a solution of ε over N.

For a given ε ∈ SHTP
find ϕε ∈ FO2

% such that
ϕε is FinSAT iff ε is solvable.

A glance at the undecidability proof of FO2 + global %: Reduction Part I

1.We use unary predicates Au for each variable u from ε.
• Idea: A |= ϕε then u 7→ |AA

u | is a solution of ε.
2. To encode u = 1 we write: ∃xAu(x) ∧ ∀x∀y (Au(x) ∧ Au(y))→ x = y
3. To encode u = v + w we write:
• For a fresh Half we write ∃=50%x .Half(x), and that AA

u ⊆ HalfA as well as AA
v ∪ AA

w ⊆ A \ HalfA

• Employ the trick with equicardinality of AA
u and AA

v ∪ AA
w .

4. How to encode multiplication?
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By expressing every equation we obtain the desired ϕε and conclude undecidability.

A glance at the undecidability proof of FO2 + global %: Reduction Part II

1. To encode u · v = w (so |AA
u | · |AA

v | = |AA
w |) we write:

• Introduce a fresh binary symbol Mult.
• MultA links every element from AA

u to some elements from AA
w . (easy)

• Every element from AA
u has exactly |AA

v | MultA-successors (trick with equi-cardinality).
• The inverse of MultA is functional (trick with functionality).
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Summary

• FINSAT for FO2 + % is undecidable under any semantics.
• FINSAT for GF3 + % is undecidable under local semantics.
• FINSAT for GF2 + global % is undecidable.
• FINBranchSAT for GF2 + local % is ExpTime-complete and CQ querying is 2ExpTime-complete.
• FINSAT for GF2 + local % is in 3NExpTime + CQ querying in 4NExpTime.

Open problems
1. How to show ExpTime upper bound for FINSAT of GF2 + local %?
2. Can we improve our undecidability proofs to avoid the use of equality symbol?
3. Is there any other decidable logic that will stay decidable with arithmetics?

Any questions?
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