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Agenda

� Classical results on FO2 and related logics
� Logics on restricted classes of structures (words and trees)
� The main results of the paper

� namely the exact complexity of nice family of tree logics
� able to handle modulo constraints (like parity)
� with relatively small complexity blowup

� Proof ideas
� Our current research and open problems
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Historical results
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Facts about SAT and FO2 on arbitrary structures
� We are interested in finite satisfiability problems
� Models = purely relational structures, no constants, no functions

� Some classical results:
� FO undecidable (Church, Turing; 1930s)
� FO3 undecidable (Kahr, Moore, Wang; 1959)
� FO2 decidable (Mortimer; 1975)
� FO2 enjoys exponential model property (Gradel, Kolaitis, Vardi;

1997) - NEXPTIME-completeness
� Connection between FO2 and modal, temporal, description logics;
� many applications in verification and databases

Example formula:
from each element there exists a path of length 3

∀x∃y (E(x , y) ∧ ∃x (E(y , x) ∧ ∃y E(x , y)))

Conclusion: FO2 decidable, but limited in terms of expressivity.
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Logics on trees
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Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:

� Ordered vs Unordered trees
� Ranked vs Unranked trees
� Finite vs Infinite trees
� With unary alphabet restriction (UAR) or without UAR

� precisely one unary predicate holds at each node
� . . .

We will focus on Finite, Ordered, Unranked Trees, where multiple
predicates can hold at one node (without UAR).
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Tree notions
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Signature τ = τ0 ∪ τnav

� τ0 – unary symbols (usually P,Q, etc.)
� τnav – navigational binary symbols with fixed interpretation

� words: ≤ (order over positions), +1 (it’s induced successor)
� unordered trees: ↓ (child), ↓+ (descendant, TC of ↓)
� ordered trees: ↓, ↓+, → (next sibling), →+ (TC of →)

P P,Q P Q P P,Q

a b c d e f g

A word:

An unordered tree: P

P Q

P,Q

P,Q

An ordered tree: P

P Q

P,Q

P,Q
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Complexity results

� FO is TOWER-complete, even for FO3 (Stockmeyer; 1974).

� FO2[≤,+1] on finite words
� FO2 is NEXPTIME-complete (Etessami et al, LICS 1997)
� Equally expressive to Unary Temporal Logic
� FO2+∃≤k+∃≥k still in NEXPTIME (Charatonik et al, CSL 2015)

� FO2[↓, ↓+,→,→+] on finite trees
� FO2 on trees is EXPSPACE-complete (Benaim et al, ICALP 2013).
� Equally expressive to Navigational XPath (Marx et al, 2004).
� FO2+∃≤k+∃≥k still in EXPSPACE (Bednarczyk et al, CSL 2017)
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NEXPTIME

FO2[≤,+1]

FO2[]

EXPSPACE

FO2[↓+], FO2[↓, ↓+,→,→+]

2-EXPTIME
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Our results
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Our settings

We work on extensions of FO2[↓, ↓+,→,→+] and FO2[≤,+1].

Logics with modulo

FO2
MOD = FO2 + ∃=k(mod l)

for arbitrary natural numbers k , l written in binary
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Our contribution

FO2
MOD on words

An alternative proof of FO2
MOD[≤,+1] EXPSPACE-upper bound.

Theorem (FO2
MOD on trees - upper bound)

Membership of FO2
MOD[↓, ↓+,→,→+] to 2-EXPTIME.

Theorem (FO2
MOD on trees - lower bound)

2-EXPTIME-hardness for FO2
MOD[↓, ↓+].
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Why modulo counting matters?
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The general idea of counting quantifiers in logic

� Goal: increase expressiveness by adding an ability to count
� Counting quantifiers ∃≥k ,∃≤k

� Graded modalities ♦≥k ,♦≤k , E≥k ,A≤k

� Well-known extensions:
� Graded modal logic (over 25 papers!, 1985 - ...)
� Graded PDL (Nguyen, CS&P 2015)
� Graded strategy logic, CTL, CTL* (Murano et al, 2010-2016)
� Graded µ-calculus (Kupferman et al, CADE 2002)
� FO2 and GF2 with counting quantifiers (Pratt-Hartmann 2007)
� FO2 with counting on words (Charatonik et al, CSL 2015)
� FO2 with counting on trees (Bednarczyk et al, CSL 2017)
� description logics, dependence logic, epistemic logic
� and so on, and so on, and so on...

� This talk: What if we change a little the way we count?
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Why modulo counting matters?

� Parity - not expressible in FO

� Definability is well-studied on words
and trees (Straubing 2008 survey),
but satisfiability was neglected

� Connections with circuit complexity
� PARITY is not in AC0

� Modular gates + AC0 = ACC0

� Separating NC1 from ACC0

(important open problem!)

16 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Why modulo counting matters?

� Parity - not expressible in FO
� Definability is well-studied on words

and trees (Straubing 2008 survey),
but satisfiability was neglected

� Connections with circuit complexity
� PARITY is not in AC0

� Modular gates + AC0 = ACC0

� Separating NC1 from ACC0

(important open problem!)

16 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Why modulo counting matters?

� Parity - not expressible in FO
� Definability is well-studied on words

and trees (Straubing 2008 survey),
but satisfiability was neglected

� Connections with circuit complexity
� PARITY is not in AC0

� Modular gates + AC0 = ACC0

� Separating NC1 from ACC0

(important open problem!)

16 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Why modulo counting matters?
An example property expressible in FO2

MOD

There is an alarm every 60 seconds.

∀x
((

∃=0(mod 60)y(y < x)
)
→ alarm(x)

)
17 / 33
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Proof ideas - lower bound

18 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Lower bound

How did we prove the lower bound?

� We introduced a new version of tilling games
� 2-EXPTIME-compl by painful reduction from halting for

AEXPSPACE Turning machines
� Encoding of winning strategy of game in our logic

19 / 33
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Tilling game

Prover and Spoiler Rules

� Finite set of puzzles

� Horizontal and vertical constraints
� Goal: Construct a correct tilling of a

board of the size 2n × k
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Tilling game

Constraints Rules

� Finite set of puzzles

� Horizontal and vertical constraints
� Goal: Construct a correct tilling of a

board of the size 2n × k
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An example: Correct tilling
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How modulo counting help us to play this game?
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Proof ideas - upper bound
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Finite satisfiability cooking recipe

� Step 1. Transform your formula into a normal form
� Step 2. Design a right notion of a type

� And prove that your notion is ”correct” . . .
� Step 3. Show small model property

� Restrict your attention to trees with:
� doubly-exponential degree of every nodes and
� doubly-exponentially long paths

� Do it by cutting out too long ↓ and →-paths
� Step 4. Present an alternating algorithm

� in this case AEXPSPACE (= 2-EXPTIME)
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Order formulas

Assuming τnav = {↓, ↓+,→,→+}.
There are ten of them:

Position Θ Θ–related with ”c”
θ=

{c}

θ↓

{f ,g,h}

θ↑

{a}

θ↓↓+

{j , k , l ,m}

θ→

{d}

θ←

{b}

θ↑↑+ , θ⇒+ , θ⇔+

∅

θ 6∼

{e, i}

Ex: θ↓↓+(x , y) = x↓+y ∧ ¬(x↓y)

a

b

e

i

c

f

j

k l m

g h

d
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θ= {c}
θ↓ {f ,g,h}
θ↑ {a}
θ↓↓+ {j , k , l ,m}
θ→ {d}
θ← {b}

θ↑↑+ , θ⇒+ , θ⇔+ ∅
θ 6∼

{e, i}

Ex: θ↓↓+(x , y) = x↓+y ∧ ¬(x↓y)
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Atomic 1-types

� 1-type over signature τ is a color of a single node
� The total number of 1-types is bounded exponentially in |τ |
� Example:

Unary symbols τ0 =

{
,

}
=

{
Green(),Red()

}

Possible 1-types ατ0 =

{
, , ,

}
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A new ingredient - Full type - definition

� Recall that:
� 1-types ατ0 - colors of nodes over signature τ0

An example: ατ0 =

{
, , ,

}
� Positions Θ - how to compare nodes

Θ = {θ=, θ↓, θ↑, θ↓↓+ , θ↑↑+ , θ→, θ←, θ⇒+ , θ⇔+ , θ 6∼}

� (Zl1 , . . . ,Zln)–Full type
� information about the whole tree from local point of view

(Zl1 , . . . ,Zln)-ftp(x) :: Θ → α → {0,1} × Zl1 × . . .× Zln

� The total number of ftps is doubly-exponential.

27 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

A new ingredient - Full type - definition

� Recall that:
� 1-types ατ0 - colors of nodes over signature τ0

An example: ατ0 =

{
, , ,

}
� Positions Θ - how to compare nodes

Θ = {θ=, θ↓, θ↑, θ↓↓+ , θ↑↑+ , θ→, θ←, θ⇒+ , θ⇔+ , θ 6∼}

� (Zl1 , . . . ,Zln)–Full type
� information about the whole tree from local point of view

(Zl1 , . . . ,Zln)-ftp(x) :: Θ → α → {0,1} × Zl1 × . . .× Zln

� The total number of ftps is doubly-exponential.

27 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

A full type example

α =

{
, , ,

}
ftp(c) : Θ → α → {0,1} × Z3

a
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e

i

c

f

j

k l m

g h

d

Θ

θ= ? ? ? ?
θ↓ ? ? ? ?
θ↓↓+ ? ? ? ?
θ 6∼ . . . . . . . . . . . .
θ→ . . . . . . . . . . . .
. . .
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Pumping lemma and a small model property
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Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Algorithm.

30 / 33



Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Conclusions
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Open problems

� Establish the complexity of missing subfragments for FO2
MOD

� Guarded fragment restriction, UAR restriction
� Develop equivalent version of CTL, CLT*, PDL, and so on.
� FO2

MOD on arbitrary structures
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NEXPTIME

FO2[≤,+1]

FO2[]

EXPSPACE

FO2[↓+], FO2[↓, ↓+,→,→+]

2-EXPTIME
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