Modulo Counting on Words and Trees (joint work with Witold Charatonik)

Bartosz Bednarczyk

bartosz.bednarczyk@ens-paris-saclay.fr

École normale supérieure Paris-Saclay and University of Wrocław

FSTTCS 2017 Kanpur, December 13, 2017

Agenda

- Classical results on \mathcal{FO}^2 and related logics
- Logics on restricted classes of structures (words and trees)
- The main results of the paper
 - namely the exact complexity of nice family of tree logics
 - able to handle modulo constraints (like parity)
 - with relatively small complexity blowup
- Proof ideas
- Our current research and open problems

Historical results

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO* undecidable (Church, Turing; 1930s)

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - □ *FO*² enjoys exponential model property (Gradel, Kolaitis, Vardi; 1997) NExPTIME-completeness

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - *FO*² enjoys exponential model property (Gradel, Kolaitis, Vardi; 1997) - NEXPTIME-completeness
 - □ Connection between \mathcal{FO}^2 and modal, temporal, description logics;
 - many applications in verification and databases

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - *FO*² enjoys exponential model property (Gradel, Kolaitis, Vardi; 1997) - NEXPTIME-completeness
 - □ Connection between \mathcal{FO}^2 and modal, temporal, description logics;
 - many applications in verification and databases

Example formula:

from each element there exists a path of length 3

 $\forall \mathbf{x} \exists \mathbf{y} \left(E(\mathbf{x}, \mathbf{y}) \land \exists x \left(E(\mathbf{y}, x) \land \exists \mathbf{y} \ E(x, \mathbf{y}) \right) \right)$

- We are interested in finite satisfiability problems
- Models = purely relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - □ \mathcal{FO}^2 enjoys exponential model property (Gradel, Kolaitis, Vardi; 1997) NEXPTIME-completeness
 - $\hfill\square$ Connection between \mathcal{FO}^2 and modal, temporal, description logics;
 - many applications in verification and databases

Example formula:

from each element there exists a path of length 3

 $\forall \mathbf{x} \exists \mathbf{y} \left(E(\mathbf{x}, \mathbf{y}) \land \exists \mathbf{x} \left(E(\mathbf{y}, \mathbf{x}) \land \exists \mathbf{y} \ E(\mathbf{x}, \mathbf{y}) \right) \right)$

Conclusion: \mathcal{FO}^2 decidable, but limited in terms of expressivity.

Logics on trees

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

Ordered vs Unordered trees

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

- Ordered vs Unordered trees
- Ranked vs Unranked trees

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

- Ordered vs Unordered trees
- Ranked vs Unranked trees
- Finite vs Infinite trees

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

- Ordered vs Unordered trees
- Ranked vs Unranked trees
- Finite vs Infinite trees
- With unary alphabet restriction (UAR) or without UAR
 - precisely one unary predicate holds at each node

. . .

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

- Ordered vs Unordered trees
- Ranked vs Unranked trees
- Finite vs Infinite trees
- With unary alphabet restriction (UAR) or without UAR
 - precisely one unary predicate holds at each node

We will focus on Finite, Ordered, Unranked Trees, where multiple predicates can hold at one node (without UAR).

. . .

Tree notions

Signature $\tau = \tau_0 \cup \tau_{nav}$

- τ_0 unary symbols (usually *P*, *Q*, etc.)
- τ_{nav} navigational binary symbols with fixed interpretation
 - \Box words: \leq (order over positions), +1 (it's induced successor)
 - □ unordered trees: \downarrow (child), \downarrow_+ (descendant, TC of \downarrow)
 - □ ordered trees: \downarrow , \downarrow ₊, \rightarrow (next sibling), \rightarrow ⁺ (TC of \rightarrow)

Complexity results

• \mathcal{FO} is TOWER-complete, even for \mathcal{FO}^3 (Stockmeyer; 1974).

Complexity results

- \mathcal{FO} is TOWER-complete, even for \mathcal{FO}^3 (Stockmeyer; 1974).
- $\mathcal{FO}^2[\leq,+1]$ on finite words
 - \square \mathcal{FO}^2 is **NEXPTIME**-complete (Etessami et al, LICS 1997)
 - Equally expressive to Unary Temporal Logic
 - □ $\mathcal{FO}^2 + \exists^{\leq k} + \exists^{\geq k}$ still in NEXPTIME (Charatonik et al, CSL 2015)

- \mathcal{FO} is TOWER-complete, even for \mathcal{FO}^3 (Stockmeyer; 1974).
- $\mathcal{FO}^2[\leq,+1]$ on finite words
 - \square \mathcal{FO}^2 is **NEXPTIME**-complete (Etessami et al, LICS 1997)
 - Equally expressive to Unary Temporal Logic
 - □ $\mathcal{FO}^2 + \exists^{\leq k} + \exists^{\geq k}$ still in NExPTIME (Charatonik et al, CSL 2015)
- $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ on finite trees
 - \square \mathcal{FO}^2 on trees is **EXPSPACE**-complete (Benaim et al, ICALP 2013).
 - □ Equally expressive to Navigational XPath (Marx et al, 2004).
 - □ $\mathcal{FO}^2 + \exists^{\leq k} + \exists^{\geq k}$ still in ExpSpace (Bednarczyk et al, CSL 2017)

10/33

Introduction Tree structures Our contribution Why modulo? Lower bound Upper bound Conclusions

Our results

Our settings

We work on extensions of $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ and $\mathcal{FO}^2[\leq,+1]$. Logics with modulo

$$\mathcal{FO}_{\mathrm{MOD}}^2 = \mathcal{FO}^2 + \exists^{=k \pmod{l}}$$

for arbitrary natural numbers k, l written in binary

Our contribution

 $\mathcal{FO}^2_{\text{MOD}}$ on words

An alternative proof of $\mathcal{FO}^2_{MOD}[\leq, +1]$ EXPSPACE-upper bound.

Our contribution

 \mathcal{FO}_{MOD}^2 on words An alternative proof of $\mathcal{FO}_{MOD}^2[\le, +1]$ EXPSPACE-upper bound.

Theorem (\mathcal{FO}^2_{MOD} on trees - upper bound) Membership of $\mathcal{FO}^2_{MOD}[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ to 2-EXPTIME.

Theorem $(\mathcal{FO}_{MOD}^2 \text{ on trees - lower bound})$ 2-EXPTIME-*hardness for* $\mathcal{FO}_{MOD}^2[\downarrow,\downarrow_+]$.

The general idea of counting quantifiers in logic

- Goal: increase expressiveness by adding an ability to count
 - □ Counting quantifiers $\exists^{\geq k}, \exists^{\leq k}$
 - □ Graded modalities $\Diamond_{\geq k}, \Diamond_{\leq k}, E^{\geq k}, A^{\leq k}$

The general idea of counting quantifiers in logic

- Goal: increase expressiveness by adding an ability to count
 - □ Counting quantifiers $\exists^{\geq k}, \exists^{\leq k}$
 - □ Graded modalities $\Diamond_{\geq k}, \Diamond_{\leq k}, E^{\geq k}, A^{\leq k}$
- Well-known extensions:
 - Graded modal logic (over 25 papers!, 1985 ...)
 - Graded PDL (Nguyen, CS&P 2015)
 - Graded strategy logic, CTL, CTL* (Murano et al, 2010-2016)
 - □ Graded *µ*-calculus (Kupferman et al, CADE 2002)
 - $\square \mathcal{FO}^2$ and \mathcal{GF}^2 with counting quantifiers (Pratt-Hartmann 2007)
 - $\square \mathcal{FO}^2$ with counting on words (Charatonik et al, CSL 2015)
 - $\square \mathcal{FO}^2$ with counting on trees (Bednarczyk et al, CSL 2017)
 - description logics, dependence logic, epistemic logic
 - $\hfill\square$ and so on, and so on, and so on...

The general idea of counting quantifiers in logic

- Goal: increase expressiveness by adding an ability to count
 - □ Counting quantifiers $\exists^{\geq k}, \exists^{\leq k}$
 - □ Graded modalities $\Diamond_{\geq k}, \Diamond_{\leq k}, E^{\geq k}, A^{\leq k}$
- Well-known extensions:
 - Graded modal logic (over 25 papers!, 1985 ...)
 - Graded PDL (Nguyen, CS&P 2015)
 - Graded strategy logic, CTL, CTL* (Murano et al, 2010-2016)
 - □ Graded *µ*-calculus (Kupferman et al, CADE 2002)
 - $\square \mathcal{FO}^2$ and \mathcal{GF}^2 with counting quantifiers (Pratt-Hartmann 2007)
 - $\square \mathcal{FO}^2$ with counting on words (Charatonik et al, CSL 2015)
 - $\square \mathcal{FO}^2$ with counting on trees (Bednarczyk et al, CSL 2017)
 - description logics, dependence logic, epistemic logic
 - $\hfill\square$ and so on, and so on, and so on...
- This talk: What if we change a little the way we count?

■ Parity - not expressible in *FO*

- Parity not expressible in \mathcal{FO}
- Definability is well-studied on words and trees (Straubing 2008 survey), but satisfiability was neglected

- Parity not expressible in *FO*
- Definability is well-studied on words and trees (Straubing 2008 survey), but satisfiability was neglected
- Connections with circuit complexity
 - PARITY is not in AC⁰
 - Modular gates + $AC^0 = ACC^0$
 - Separating NC¹ from ACC⁰ (important open problem!)

An example property expressible in \mathcal{FO}_{MOD}^2 There is an alarm every 60 seconds.

Proof ideas - lower bound
Lower bound

Lower bound

How did we prove the lower bound?

- We introduced a new version of tilling games
- 2-EXPTIME-compl by painful reduction from halting for AEXPSPACE Turning machines
- Encoding of winning strategy of game in our logic

Tilling game

Prover and Spoiler

Rules

Finite set of puzzles

- Horizontal and vertical constraints
- Goal: Construct a correct tilling of a board of the size 2ⁿ × k

Constraints

Rules

Finite set of puzzles

- Horizontal and vertical constraints
- Goal: Construct a correct tilling of a board of the size 2ⁿ × k

An example: Correct tilling

How modulo counting help us to play this game?

Proof ideas - upper bound

Upper bound

Upper bound

Finite satisfiability cooking recipe

Step 1. Transform your formula into a normal form

- Step 1. Transform your formula into a normal form
- Step 2. Design a right notion of a type
 - □ And prove that your notion is "correct" ...

Upper bound

- Step 1. Transform your formula into a normal form
- Step 2. Design a right notion of a type
 - □ And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - doubly-exponential degree of every nodes and
 - doubly-exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and \rightarrow -paths

Upper bound

- Step 1. Transform your formula into a normal form
- Step 2. Design a right notion of a type
 - □ And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - doubly-exponential degree of every nodes and
 - doubly-exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and \rightarrow -paths
- Step 4. Present an alternating algorithm
 - □ in this case AExpSpace (= 2-ExpTIME)

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	
θ_{\downarrow}	
θ_{\uparrow}	
$\theta_{\downarrow\downarrow+}$	
θ_{\rightarrow}	
θ_{\leftarrow}	
$\theta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{^+}$	
$\theta_{\not\sim}$	

$$\mathsf{Ex:} \ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	
$ heta_{\uparrow}$	
$\theta_{\downarrow\downarrow+}$	
θ_{\rightarrow}	
θ_{\leftarrow}	
$\theta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{^+}$	
θ_{γ}	

$$\mathsf{Ex:} \ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	$\{f, g, h\}$
θ_{\uparrow}	
$\theta_{\downarrow\downarrow+}$	
θ_{\rightarrow}	
θ_{\leftarrow}	
$\theta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{^+}$	
θ_{γ}	

$$\mathsf{Ex:}\ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ C }
θ_{\downarrow}	$\{f, g, h\}$
$ heta_{\uparrow}$	{ a }
$ heta_{\downarrow\downarrow+}$	
θ_{\rightarrow}	
θ_{\leftarrow}	
$ heta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{\rightleftharpoons^+}$	
θ_{γ}	

$$\mathsf{Ex:}\ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ -related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	$\{f, g, h\}$
θ_{\uparrow}	{ a }
$ heta_{\downarrow\downarrow+}$	$\{j, k, l, m\}$
θ_{\rightarrow}	
θ_{\leftarrow}	
$ heta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{\rightleftharpoons^+}$	
$\theta_{\not\sim}$	

$$\mathsf{Ex:} \ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	$\{f, g, h\}$
$ heta_{\uparrow}$	{ a }
$\theta_{\downarrow\downarrow+}$	$\{j, k, l, m\}$
θ_{\rightarrow}	{ d }
θ_{\leftarrow}	
$ heta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{\leftrightarrows^+}$	
θ_{γ}	

$$\mathsf{Ex:} \ \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	$\{f, g, h\}$
θ_{\uparrow}	{ a }
$\theta_{\downarrow\downarrow\downarrow_+}$	$\{j, k, l, m\}$
θ_{\rightarrow}	{ d }
θ_{\leftarrow}	{ b }
$ heta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{\rightleftharpoons^+}$	
θ_{γ}	

$$\mathsf{Ex:}\; \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ <i>C</i> }
θ_{\downarrow}	$\{f, g, h\}$
$ heta_{\uparrow}$	{ a }
$\theta_{\downarrow\downarrow+}$	$\{j, k, l, m\}$
θ_{\rightarrow}	{ d }
θ_{\leftarrow}	{ <i>b</i> }
$ heta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{\leftrightarrows^+}$	Ø
θ_{γ}	

$$\mathsf{Ex:}\; \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$. There are ten of them:

Position Θ	Θ-related with "c"
$\theta_{=}$	{ C }
θ_{\downarrow}	$\{f, g, h\}$
$ heta_{\uparrow}$	{ a }
$\theta_{\downarrow\downarrow+}$	$\{j, k, l, m\}$
θ_{\rightarrow}	{ d }
θ_{\leftarrow}	{ b }
$\theta_{\uparrow\uparrow^+}, heta_{\rightrightarrows^+}, heta_{aaa}^+$	Ø
$\theta_{\not\sim}$	{ e , <i>i</i> }

$$\mathsf{Ex} \colon \theta_{\downarrow\downarrow\downarrow_+}(x,y) = x \downarrow_+ y \land \neg(x \downarrow y)$$

Atomic 1-types

- 1-type over signature τ is a color of a single node
- The total number of 1-types is bounded exponentially in $|\tau|$
- Example:

Unary symbols
$$au_0 = \left\{ oldsymbol{\Theta}, oldsymbol{\Theta} \right\} = \left\{ \mathsf{Green}(), \mathsf{Red}() \right\}$$

Possible 1-types
$$\boldsymbol{\alpha}_{ au_0} = \left\{\bigcirc, igodot, igodot,$$

A new ingredient - Full type - definition

Recall that:

 $\ \square$ 1-types $oldsymbol{lpha}_{ au_0}$ - colors of nodes over signature au_0

An example:
$$\boldsymbol{\alpha}_{\tau_0} = \left\{\bigcirc, lackbdow, lackbdow, lackbdow, lackbdow\right\}$$

□ Positions Θ - how to compare nodes

$$\Theta = \{\theta_{=}, \theta_{\downarrow}, \theta_{\uparrow}, \theta_{\downarrow\downarrow_{+}}, \theta_{\uparrow\uparrow^{+}}, \theta_{\rightarrow}, \theta_{\leftarrow}, \theta_{\rightrightarrows^{+}}, \theta_{\Leftarrow^{+}}, \theta_{\nsim}\}$$

Upper bound

A new ingredient - Full type - definition

Recall that:

 $\ \square$ 1-types $oldsymbol{lpha}_{ au_0}$ - colors of nodes over signature au_0

An example:
$$\boldsymbol{\alpha}_{\tau_0} = \left\{\bigcirc, lackbdow, lackbdow, lackbdow, lackbdow\right\}$$

Positions Θ - how to compare nodes

$$\Theta = \{\theta_{=}, \theta_{\downarrow}, \theta_{\uparrow}, \theta_{\downarrow\downarrow_{+}}, \theta_{\uparrow\uparrow^{+}}, \theta_{\rightarrow}, \theta_{\leftarrow}, \theta_{\rightrightarrows^{+}}, \theta_{\rightleftharpoons^{+}}, \theta_{\nsim}\}$$

(ℤ_{I1},...,ℤ_{In})−Full type
 □ information about the whole tree from local point of view

$$(\mathbb{Z}_{l_1}, \dots, \mathbb{Z}_{l_n})$$
-ftp $(x) :: \Theta \to \boldsymbol{\alpha} \to \{0, 1\} \times \mathbb{Z}_{l_1} \times \dots \times \mathbb{Z}_{l_n}$

□ The total number of ftps is doubly-exponential.

$$oldsymbol{lpha} = \left\{ oldsymbol{0}, oldsymbol{\Theta}, oldsymbol{0}, oldsymbol{\Theta}
ight\}$$

$$\mathit{ftp}(\mathit{c}):\Theta
ightarrowlpha
ightarrow\{0,1\} imes\mathbb{Z}_3$$

$$\boldsymbol{lpha} = \left\{ oldsymbol{0}, oldsymbol{0}, oldsymbol{0}, oldsymbol{0}
ight\}$$

 $\mathit{ftp}(\mathit{c}): \Theta \rightarrow \alpha \rightarrow \{0,1\} \times \mathbb{Z}_3$

$$\boldsymbol{lpha} = \left\{ oldsymbol{0}, oldsymbol{0}, oldsymbol{0}, oldsymbol{0}
ight\}$$

$$\mathit{ftp}(\mathit{c}): \Theta
ightarrow lpha
ightarrow \{0,1\} imes \mathbb{Z}_3$$

Pumping lemma and a small model property

// See Definition 5

// Last node on the path

// Path too long

Algorithm.

Procedure 2: Building a subtree rooted at given node

- **Input:** Formula $\varphi \in \mathrm{FO}^2_{\mathrm{MOD}}[\downarrow, \downarrow^+, \rightarrow, \rightarrow^+]$ in normal form, full type $\overline{\alpha}$ of a starting node, and current level $\mathrm{Lvl} \in \mathbb{N}$.
- 1 if not is- φ -consistent($\overline{\alpha}$) then reject
- **2** if $Lvl \geq f(\varphi)$ then reject
- **3** if $\overline{\alpha}(\theta_{\downarrow})$ is zero then accept
- **4** Guess the degree $\text{Deg} \in [1, \mathfrak{f}(\varphi)]$ of a node
- **5 Guess** the full type $\overline{\beta}$ of the leftmost child and check if its a valid leftmost son of $\overline{\alpha}$
- $\begin{array}{ll} \mathbf{6} & O_{\theta_{\downarrow}} := \overline{\beta}(\theta_{=}) & // \text{ Types of children guessed so far} \\ \mathbf{7} & O_{\theta_{-,+}} := \overline{\beta}(\theta_{\downarrow}) \oplus \overline{\beta}(\theta_{\downarrow\downarrow+}) & // \text{ Types of descendants guessed so far} \end{array}$
- s while Deg > 1 do
- 9 Run in parallel Procedure 2 on $(\varphi, \overline{\beta}, Lvl + 1)$ // Alternation here
- 10 Guess a full type $\overline{\gamma}$ of the right brother of $\overline{\beta}$ and check consistency with $\overline{\alpha}$
- $\begin{array}{c|c} \mathbf{11} & O_{\theta_{\downarrow}} := O_{\theta_{\downarrow}} \oplus \overline{\gamma}(\theta_{=}), \, O_{\theta_{\downarrow\downarrow+}} := O_{\theta_{\downarrow\downarrow+}} \oplus \overline{\gamma}(\theta_{\downarrow}) \oplus \overline{\gamma}(\theta_{\downarrow\downarrow+}) & // \text{ Updating obligations} \\ \mathbf{12} & \overline{\beta} := \overline{\gamma}, \, \text{Deg} := \text{Deg} 1 \end{array}$

13 Run in parallel Procedure 2 on
$$(\varphi, \overline{\beta}, Lvl + 1)$$
 // Last child
14 if $\overline{\beta}(\theta_{\rightarrow})$ is not zero then reject // Not valid last node on \rightarrow -path.
15 if $\overline{\alpha}(\theta_{\downarrow}) = O_{\theta_{\downarrow}}$ and $\overline{\alpha}(\theta_{\downarrow\downarrow+}) = O_{\theta_{\downarrow\downarrow+}}$ then accept else reject
Conclusions

Open problems

- Establish the complexity of missing subfragments for \mathcal{FO}^2_{MOD}
- Guarded fragment restriction, UAR restriction
- Develop equivalent version of CTL, CLT*, PDL, and so on.
- \mathcal{FO}_{MOD}^2 on arbitrary structures

