
"Most of" leads to undecidability
Failure of adding frequencies to LTL

FoSSaCS 2021

Bartosz Bednarczyk, Jakub Michaliszyn

TU Dresden & University of Wrocław

What’s the formal verification about?

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 1 / 18

http://qmc.cs.aau.dk/slides/slides-markey-1.pdf

Linear-time Temporal Logic (LTL)

atomic propositions: , , ...

boolean combinators: ¬', ' _ , ' ^ , ...

temporal modalities:

X ' ' “next '”

' U ' ' “' until ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.

Linear-time Temporal Logic (LTL)
atomic propositions: , , ...

boolean combinators: ¬', ' _ , ' ^ , ...

temporal modalities:

X ' ' “next '”

' U ' ' “' until ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.

Linear-time Temporal Logic (LTL)
atomic propositions: , , ...

boolean combinators: ¬', ' _ , ' ^ , ...

temporal modalities:

X ' ' “next '”

' U ' ' “' until ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.

Linear-time Temporal Logic (LTL)
atomic propositions: , , ...

boolean combinators: ¬', ' _ , ' ^ , ...

temporal modalities:

X ' ' “next '”

' U ' ' “' until ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.

Linear-time Temporal Logic (LTL)
atomic propositions: , , ...

boolean combinators: ¬', ' _ , ' ^ , ...

temporal modalities:

X ' ' “next '”

' U ' ' “' until ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.

Satisfiability and model checking

Two main algorithmic problems

Satisfiability:
Input: a formula ' in LTL;
Output:

yes if there exists a Kripke structure M s.t. M |= ';
no otherwise.

Model checking:
Input: a formula ' in LTL, and a Kripke structure M;
Output:

yes if M |= ';
no otherwise.

Satisfiability and model checking

Two main algorithmic problems
Satisfiability:

Input: a formula ' in LTL;
Output:

yes if there exists a Kripke structure M s.t. M |= ';
no otherwise.

Model checking:
Input: a formula ' in LTL, and a Kripke structure M;
Output:

yes if M |= ';
no otherwise.

Satisfiability and model checking

Two main algorithmic problems
Satisfiability:

Input: a formula ' in LTL;
Output:

yes if there exists a Kripke structure M s.t. M |= ';
no otherwise.

Model checking:
Input: a formula ' in LTL, and a Kripke structure M;
Output:

yes if M |= ';
no otherwise.

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.

• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 10 / 18

https://icon-icons.com/icon/question-emoticon/5056

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:

• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.

• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.

• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.

• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line

• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].

• Availability expressions [Hoenicke et al. 2010]:
“Kleene, Rabin, and Scott are available”

All of them are undecidable!
And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”

All of them are undecidable!
And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”

All of them are undecidable!

And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”

All of them are undecidable!
And the problem seems to be the until operator.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 11 / 18

Our setting

We allow only for “finally” F operator +
“most of the previous positions satisfies ϕ” PM(ϕ)

or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)

or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our setting
We allow only for “finally” F operator +

“most of the previous positions satisfies ϕ” PM(ϕ)
or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|
Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 12 / 18

Our results

• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.

• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.

• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.

• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique

• We focus on a single modality Half:
w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i

2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)

• The proof goes via encoding of Minsky’s two counter machines
In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 13 / 18

Shadowy words

Consider an alphabet {wht, shdw}.
A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:

• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht

• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)

• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))

• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht)

, where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows!

ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)

Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white:

wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .

and sees only the last shadows G (shdw → ϕlast)
Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)

and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows

G (shdw → ϕlast)
Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)

and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)

and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 16 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 17 / 18

Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines
• We use shadowy words and tricks with +p

2 to express equicardinality

Thanks for attention!

Some initial LTL slides by c©Nicolas Markey.

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 18 / 18

