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What’s the formal verification about?
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Linear-time Temporal Logic (LTL)

atomic propositions: , , ...

boolean combinators: ¬', ' _  , ' ^  , ...

temporal modalities:

X ' ' “next '”

' U  ' '  “' until  ”

' “eventually '”true U ' ⌘ F '

¬ F ¬' ⌘ G ' ' ' ' ' ' “always '”

A Kripke structure satisfies ' 2 LTL if all its infinite executions do:

M |= ' () 8⇡ 2 TM. ⇡ |= '.
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Satisfiability and model checking

Two main algorithmic problems

Satisfiability:
Input: a formula ' in LTL;
Output:

yes if there exists a Kripke structure M s.t. M |= ';
no otherwise.

Model checking:
Input: a formula ' in LTL, and a Kripke structure M;
Output:

yes if M |= ';
no otherwise.
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LTL: Ups and downs

Theorem (LTL is PSpace-complete.)

• Model checking and satisfiability are logspace interreducible.
• PSpace upper bound = on-the-fly construction of Buchi automata

LTL is useful in verification and has good algorithmic properties

So what’s wrong with it?

but it can’t express quantitative properties!
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Our goal: Extend LTL with frequency constraints

Related works:
• Frequency LTL [Bollig et al. 12]: Extension of LTL with frequency until.
• Averaging in LTL [Bouyer et al. 14]: weighted alphabet, until calculating avg.
• Discounted-LTL [Almagor et al. 14] = long paths makes formulae less true.
• Metric LTL [Koymans’90] - time modelled as a real line
• ULTL[F,P, X, Y] with Presburger Arithmetics [Lodaya and Sreejith 17].
• Availability expressions [Hoenicke et al. 2010]:

“Kleene, Rabin, and Scott are available”
All of them are undecidable!

And the problem seems to be the until operator.
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Our setting

We allow only for “finally” F operator +
“most of the previous positions satisfies ϕ” PM(ϕ)

or “a is the most-frequent-letter in the past” MFL(a)

w, i |= Fϕ if ∃j such that |w| > j ≥ i and w, j |= ϕ

w, i |= PMϕ if |{j < i : w, j |= ϕ}| ≥ i
2

w, i |= MFL σ if ∀τ ∈ AP. |{j < i : w, j |= σ}| ≥ |{j < i : w, j |= τ}|
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Our results

• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.
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• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines

In the last few minutes we present the main ideas of the encoding.
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Shadowy words

Consider an alphabet {wht, shdw}.
A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:

• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht

• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)

• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))

• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht)

, where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Shadowy words
Consider an alphabet {wht, shdw}.

A word w is shadowy it belongs to (wht · shdw)+

Lemma
Shadowy words are LTLF,Half-definable.

Proof
It suffices to employ the following formulae:
• wht
• G (wht ↔ ¬shdw)
• G (wht → F (shdw))
• G (ϕeven ↔ wht), where ϕeven := Half wht

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 14 / 18



Transferring truth predicates

Lemma
Transfer formulae LTLF,Half-definable.

Proof
It suffices to express:
• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.
• all white p satisfy (♥) : #<

wht∧σ(w, p) = #<
shdw∧σ̃(w, p)

Bartosz Bednarczyk, Jakub Michaliszyn “Most of” leads to undecidability 15 / 18
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• (♦) : for the last white position p we have: w, p |= σ ⇔ w, p+1 |= σ̃.

Last position sees only shadows! ϕlast := G (shdw)
Second to last position is white: wht . . .
and sees only the last shadows G (shdw → ϕlast)

Hence, take ϕsec-to-last := wht ∧ G (shdw → ϕlast)
and the formula F (ϕsec-to-last ∧ ±σ) ∧ F (ϕlast ∧ ±σ̃) does the job!
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• all white p satisfy (♥) : #<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p) = #<

shdw∧σ̃(w, p)

#<
wht∧σ(w, p)−#<

shdw∧σ̃(w, p) = 0

#<
wht∧σ(w, p) + p

2 −#<
shdw∧σ̃(w, p) = p

2 = "Half"

#<
wht∧σ(w, p) + #<

shdw(w, p)−#<
shdw∧σ̃(w, p) = "Half"

#<
wht∧σ(w, p) + #<

shdw∧¬σ̃(w, p) = "Half"

and hence we get a formula Half([wht ∧ σ] ∨ [shdw ∧ ¬σ̃])
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Our results
• LTL with F and PM is undecidable.
• LTL with F and MFL is undecidable.
• Some rather uninteresting fragments of LTL+PM are decidable.
• FO2[<] + Majority quantifier is undecidable.

Our proof technique
• We focus on a single modality Half:

w, i |= Half ϕ if |{j < i : w, j |= ϕ}| = i
2

Half ϕ := PM (ϕ) ∧ PM (¬ϕ)
• The proof goes via encoding of Minsky’s two counter machines
• We use shadowy words and tricks with +p

2 to express equicardinality

Thanks for attention!

Some initial LTL slides by c©Nicolas Markey.
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