On One Variable Fragment of First Order Logic with Modulo Counting Quantifiers

Bartosz Bednarczyk

bbednarczyk@stud.cs.uni.wroc.pl Institute of Computer Science University of Wrocław Wrocław, Poland

Toulouse, July 20, 2017

On One Variable Fragment of First Order Logic ting Quantifiers A few words about logics with modulo counting

Bartosz Bednarczyk

bbednarczyk@stud.cs.uni.wroc.pl Institute of Computer Science University of Wrocław Wrocław, Poland

Toulouse, July 20, 2017

Agenda

- Some historical results about FO and related logics
- A little about my current work
- Motivation example modal logic K5 with modulo modalities
- \blacksquare Satisfiability of $\mathrm{FO^{1}_{MOD}}$
- A few minutes for questions

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- \blacksquare Models $=$ relational structures, no constants, no functions

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- \blacksquare Models $=$ relational structures, no constants, no functions
- Some classical results:
	- □ FO undecidable (Church, Turing; 1930s)
	- $\Box~\operatorname{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
	- \Box \rm{FO}^2 decidable (Mortimer; 1975)
	- \Box \rm{FO}^2 exponential model property (Gradel, Kolaitis, Vardi; 1997) Hence, FO^2 is NEXPTIME-completeness

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- \blacksquare Models $=$ relational structures, no constants, no functions
- Some classical results:
	- □ FO undecidable (Church, Turing; 1930s)
	- $\Box~\operatorname{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
	- \Box \rm{FO}^2 decidable (Mortimer; 1975)
	- \Box \rm{FO}^2 exponential model property (Gradel, Kolaitis, Vardi; 1997) Hence, FO^2 is NEXPTIME-completeness
	- \Box Even when the expressive power of FO^2 seems to be limited, there are many connection between ${\rm FO}^2$ and modal, temporal, descriptive logics; many applications in verification and databases
	- \Box ${\rm FO}^1$ is ${\rm NPTIME}$ -complete (Folklore)

Special structures

■ What happens if we restrict the class of structures to words or trees?

Special structures

- What happens if we restrict the class of structures to words or trees?
- FO and MSO become decidable (Rabin; 1969).
- \blacksquare The complexity is non-elementary even for ${\rm FO}^3$ (Stockmeyer; 1974).
- \blacksquare Complexity for ${\rm FO}^2$ on words and trees next slide

$FO²$ words and trees

■ No additional binary predicates

- $\Box\,\,\mathrm{FO}^2[+1,\leq]$ on words is $\mathrm{NEXPTIME\text{-}complete}$ (Etessami, Vardi, Wilke; 2002).
- $\Box\;\text{FO}^2[\downarrow,\downarrow^+,\to,\to^+]$ on trees is EXPSPACE-complete (Benaim, Benedikt, Charatonik, Kieronski, Lenhardt, Mazowiecki, Worrell; 2013).
- Additional binary predicates
	- $\Box\,\,\mathrm{FO}^2[+1,\leq,\tau_{bin}]$ on words is $\mathrm{NEXPTIME\text{-}complete}$ (Thomas Zeume, Frederik Harwath; 2016).
	- $\Box\;\text{FO}^2[\downarrow,\downarrow^+,\to,\to^+,\tau_{bin}]$ on trees is EXPSPACE-complete (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- \downarrow child relation, \rightarrow right sibling relation, $+1$ successor

What next?

We will add counting quantifiers to increase expressive power.

C - logic with counting

- We add quantifiers of the form $\exists^{\leq n}, \exists^{\geq n}$ to the logic
- Numbers in quantifiers are encoded in binary (!!!)
- $C=FO$ is of course undecidable
- **Lots of problems with** C^2 **:**
	- $\Box\;\; C^2$ is decidable (Erich Gradel, Martin Otto, Eric Rosen, 1997)
	- $\Box\;\;C^2$ is in 2– $\rm NEXPTIME$ (Leszek Pacholski, Wieslaw Szwast, Lidia Tendera; 1997)
	- \Box $\rm C^2$ is in $\rm NEXPTIME$ -complete (Ian Pratt-Hartmann, 2004)
	- \Box Simplier proof via linear programming (Ian Pratt-Hartmann, 2010)
- \blacksquare $\rm C^1$ is $\rm NPTIME$ -complete (Ian Pratt-Hartmann, 2007)
- What about words and trees?

\mathbf{C}^2 words and trees

■ No additional binary predicates

- $\Box \;\; \mathrm{C}^2[+1,\leq]$ on words is $\mathrm{NEXPTIME\text{-}complete}$ (Witold Charatonik, Piotr Witkowski; 2015).
- $\Box \;\; C^2[\downarrow,\downarrow^+,\to,\to^+]$ on trees is $\operatorname{EXPSPACE-complete}$ (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- Additional binary predicates
	- $\Box \;\; C^2[+1,\leq,\tau_{bin}]$ on words is VASS-complete (Witold Charatonik, Piotr Witkowski; 2015).
	- $\Box \;\; C^2[\downarrow,\downarrow^+,\to,\to^+,\tau_{bin}]$ on trees is super hard harder than VATA (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- \downarrow child relation, \rightarrow right brother relation, $+1$ successor

Summary

Adding counting is hard and requires years of research

Modulo counting quantifiers

- \blacksquare Parity is a very simple property not expressible in FO
- We add to the logic quantifiers of the form $\exists^{=a\,(\text{mod }b)}$
- Current research involves:
	- \Box equivalences of finite structures
	- \Box locality
	- \Box databases with modulo queries
	- \Box definable tree languages
	- \Box definability of regular languages on words and its connections to algebra
	- \Box and other topics
- Surprisingly, satisfiability almost untouched

Our current results and research plans

- \blacksquare ${\rm FO^{1}_{MOD}}$ is ${\rm NPTIME}$ -complete (Bartosz Bednarczyk; ESSLLI StuS 2017; this talk)
- \blacksquare FO_{MOD}^2 is EXPSPACE -complete over words and 2- EXPTIME complete over trees (Bartosz Bednarczyk, Witold Charatonik; 2017; submitted)
- Current research plans:
	- \Box Modal logic with modulo modalities over various kind of frames
	- $\rm ^{\square}$ $\rm \rm FO_{\rm MOD}^2$ on arbitrary structures
	- \Box Consider weaker frameworks like $\mathrm{GF}_{\mathrm{MOD}}^{2}$

Today's motivation Modal logic with modulo modalities

Modal logic ML- basics

■ Syntax

$$
\varphi ::= p \in \Sigma \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi
$$

■ Structures, worlds, satisfaction

 \Box 20 - structure with its domain W (worlds), Σ signature,

 $R \subseteq W \times W$ access relation

Sometimes we additionally require relation R to be:

- \Box reflexive $\forall x R(x,x)$
- \Box serial $\forall x \exists y R(x, y)$
- \Box symmetric $\forall x \forall y \ R(x, y) \rightarrow R(y, x)$
- \Box transitive $\forall x \forall y \forall z \ R(x, y) \land R(y, z) \rightarrow R(x, z)$
- Euclidean ∀x∀y∀z R(x, y) ∧ R(x, z) → R(y, z)

Satisfaction relation \models . 1. $\mathfrak{W}, w \models p$, iff $w \in p^{\mathfrak{W}}$ 2. $\mathfrak{W}, w \models \neg \varphi$, iff not $\mathfrak{W}, w \models \varphi$ 3. $\mathfrak{W}, \mathsf{w} \models \varphi \land \psi$, iff $\mathfrak{W}, w \models \varphi$ and $\mathfrak{W}, w \models \psi$ 4. $\mathfrak{W}, \mathsf{w} \models \Box \psi$, iff $\mathfrak{W}, w \models \varphi$ or $\mathfrak{W}, w \models \psi$ 5. $\mathfrak{W}, w \models \Box \psi$, iff $\forall v \in W$ s. t. $R(w, v)$ we have $\mathfrak{W}, \mathsf{v} \models \varphi$ 6. $\mathfrak{W}, w \models \Diamond \psi$.

iff $∃v ∈ W$ s. t. $R(w, v)$ we have $\mathfrak{W}, \mathsf{v} \models \varphi$

Example structure

$$
\mathfrak{W}=(\Sigma{=}\{p,q\},W,R)
$$

15 of 27

Modulo-graded Modal logic - syntax

■ Syntax

$$
\varphi ::= \textbf{\textit{p}} \in \Sigma \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \Diamond_{\textbf{a},\textbf{b}} \varphi
$$

 $\mathfrak{W}, w \models \Diamond_{a,b} \varphi$, iff there exists exactly a mod b worlds $v \in W$, such that $R(w, v)$ and $\mathfrak{W}, v \models \varphi$

Satisfiability problem

(Local) Satisfiability problem

Given a modulo-graded modal logic formula φ . Is there a structure $\mathfrak W$ and a world $w \in W$, such that $\mathfrak W, w \models \varphi$?

■ Goal of this talk: R is Euclidean \Rightarrow LocalSat is NPTIME-complete

16 of 27

Example Euclidean structure

Euclidean property: $\forall x \forall y \forall z \ R(x, y) \land R(x, z) \rightarrow R(y, z)$

Let's focus on the main topic $\mathrm{FO_{MOD}^{1}}$ is NPTIME -complete

Language examples for $\mathrm{FO}^1_{\mathrm{MOD}}$

Every ESSLLI participant speaks English, French or German $\forall x$ (English(x) ∨ French(x) ∨ German(x)) Someone speaks both French and German $\exists x$ (French(x) \wedge German(x)) Every speaker of German speaks English $\forall x$ (German $(x) \rightarrow$ English (x))

The number of Polish speakers is even. ∃ $=^{\infty}$ ^(mod 2)x (Polish(*x*))

$\mathrm{FO_{MOD}^1}$ - basics

Syntax

$$
\varphi ::= \textit{p} \in \Sigma \mid \neg \varphi \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \forall x \varphi(x) \mid \exists x \varphi(x) \mid \exists^{\bowtie a (\text{mod } b)} x \; \varphi(x)
$$

- ∃ \bowtie a(mod ∞) is an abbreviation of ∃ \bowtie a
- **Formal description of modulo counting quantifiers**

$$
\mathfrak{M} \models \left(\exists^{\bowtie a (\text{mod } b)} \times \varphi(x) \right) \stackrel{\text{def}}{\iff}
$$

$$
\exists r \in \mathbb{Z}_b \mid \{x \in M : \varphi(x)\} \mid \equiv r \text{ (mod } b) \land r \bowtie a,
$$

where $\bowtie \in \{\leq, =, \geq\}.$

$\mathrm{FO^{1}_{MOD}}$ - normal form

Definition

We say that a formula $\varphi\in{\rm FO}_{\rm MOD}^1$ is *flat*, if:

$$
\varphi = \bigwedge_{i=1}^n \exists^{\bowtie_i a_i \pmod{b_i}} x \ \psi_i(x),
$$

where $\bowtie_i \in \{\leq, \geq\}$, each \emph{a}_i is a natural number, each \emph{b}_i is a natural number or infinity and all ψ_i are quantifier-free formulas.

Lemma

There exists a nondeterministic polynomial time procedure, taking as its input an ${\rm FO^{1}_{MOD}}$ –formula over a signature τ and producing a flat formula φ' over the same signature τ , such that φ is satisfiable iff the procedure has a run producing a satisfiable φ' .

 $\varphi = \exists^{=0 (\text{mod }10)}$ x French (\times) \bigwedge

 $\exists^{\geq 8 (\textsf{mod } 22)} \times$ German $(\mathsf{x}) \vee \mathsf{Spanish}(\mathsf{x})\bigwedge$

 $\exists^{\leq 10 (\textsf{mod}\,\,\infty)}$ x German $(x)\wedge S$ panish $(x)\wedge F$ rench (x)

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset},$ $t_{\mathsf{F}},$ $t_{\mathsf{G}},$ $t_{\mathsf{F}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}\mathsf{S}}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $\varphi = \exists^{=0 (\text{mod }10)}$ x French (\times) \bigwedge

 $\exists^{\geq 8 (\textsf{mod } 22)} \times$ German $(\mathsf{x}) \vee \mathsf{Spanish}(\mathsf{x})\bigwedge$

 $\exists^{\leq 10 (\textsf{mod}\,\,\infty)}$ x German $(x)\wedge S$ panish $(x)\wedge F$ rench (x)

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset},$ $t_{\mathsf{F}},$ $t_{\mathsf{G}},$ $t_{\mathsf{F}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}\mathsf{S}}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_1 \pmod{10} \wedge r_1 = 0$

 $\varphi = \exists^{=0 (\text{mod }10)}$ x French (\times) \bigwedge

 $\exists^{\geq 8 (\textsf{mod } 22)} \times$ German $(\mathsf{x}) \vee \mathsf{Spanish}(\mathsf{x})\bigwedge$

 $\exists^{\leq 10 (\textsf{mod}\,\,\infty)}$ x German $(x)\wedge S$ panish $(x)\wedge F$ rench (x)

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset},$ $t_{\mathsf{F}},$ $t_{\mathsf{G}},$ $t_{\mathsf{F}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}\mathsf{S}}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_1 \pmod{10} \wedge r_1 = 0$ $x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_2 \pmod{22} \land r_2 \ge 8 \land r_2 < 22$

 $\varphi = \exists^{=0 (\text{mod }10)}$ x French (\times) \bigwedge

 $\exists^{\geq 8 (\textsf{mod } 22)} \times$ German $(\mathsf{x}) \vee \mathsf{Spanish}(\mathsf{x})\bigwedge$

 $\exists^{\leq 10 (\textsf{mod}\,\,\infty)}$ x German $(x)\wedge S$ panish $(x)\wedge F$ rench (x)

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset},$ $t_{\mathsf{F}},$ $t_{\mathsf{G}},$ $t_{\mathsf{F}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}},$ $t_{\mathsf{F}\mathsf{G}\mathsf{S}}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_1 \pmod{10} \wedge r_1 = 0$ $x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_2 \pmod{22} \wedge r_2 \ge 8 \wedge r_2 < 22$ $x_{FGS} \equiv r_3 \pmod{10} \wedge r_3 \leq 10$

From systems of congruences to system of inequalities

 $\varphi = \exists^{=0 \pmod{10}}$ x French $(\mathsf{x})\bigwedge$ $\exists^{\geq 8 (\textsf{mod } 22)} \times$ German $(\mathsf{x}) \vee \mathsf{Spanish}(\mathsf{x})\bigwedge$ $\exists^{\leq 10 (\textsf{mod}\,\,\infty)}$ x German $(x)\wedge S$ panish $(x)\wedge F$ rench (x)

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = r_1 + 10q_1 \wedge r_1 = 0$ $x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} = r_2 + 22q_2 \wedge r_2 > 8 \wedge r_2 < 22$ $x_{FGS} \equiv r_3 \pmod{10} \wedge r_3 \leq 10$

Useful algebraic theorems

Lemma (Small solution)

Let $\mathcal E$ be a system of I inequalities with U unknowns. Assume that all coefficients are integers absolutely bounded by C. If there is a solution for the system $\mathcal E$ over $\mathbb N$, there is also a solution in which the values assigned to the unknowns are all bounded by $U((C)^{2l+1})$.

Lemma (Small system size)

Let $\mathcal E$ be a system of I inequalities with integer coefficients such that the absolute value of each coefficient from $\mathcal E$ is bounded by C. If $\mathcal E$ has a solution over $\mathbb N$, then it has a solution over $\mathbb N$ with the number of non-zero unknowns bounded by 2I log (4IC).

Algorithm 1 $\mathrm{FO^{1}_{MOD}}$ -sat-test

Require: a $\mathrm{FO_{MOD}^{1}}$ –formula φ

- 1: Guess φ' a flattened φ .
- 2: Guess which 1-types are realized at least one time.
- 3: Write the system of inequalities $\mathcal E$ for the guessed 1-types.
- 4: Return True, if $\mathcal E$ has a solution over $\mathbb N$ and False otherwise.

Theorem

The satisfiability problem for ${\rm FO}^1_{\rm MOD}$ is ${\rm NPTIME}$ -complete.

Questions?

Thank you for your attention