On One Variable Fragment of First Order Logic with Modulo Counting Quantifiers

Bartosz Bednarczyk

bbednarczyk@stud.cs.uni.wroc.pl Institute of Computer Science University of Wrocław Wrocław, Poland

Toulouse, July 20, 2017

-On One Variable Fragment of First Order Logic with Modulo Counting Quantifiers A few words about logics with modulo counting

Bartosz Bednarczyk

bbednarczyk@stud.cs.uni.wroc.pl Institute of Computer Science University of Wrocław Wrocław, Poland

Toulouse, July 20, 2017

Agenda

- Some historical results about FO and related logics
- A little about my current work
- Motivation example modal logic K5 with modulo modalities
- \blacksquare Satisfiability of $\mathrm{FO}_{\mathrm{MOD}}^1$
- A few minutes for questions

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ FO undecidable (Church, Turing; 1930s)
 - □ FO³ undecidable (Kahr, Moore, Wang; 1959)
 - \square FO² decidable (Mortimer; 1975)
 - FO² exponential model property (Gradel, Kolaitis, Vardi; 1997) Hence, FO² is NEXPTIME-completeness

Basic facts about SAT and fragments of FO

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ FO undecidable (Church, Turing; 1930s)
 - □ FO³ undecidable (Kahr, Moore, Wang; 1959)
 - □ FO² decidable (Mortimer; 1975)
 - $\begin{tabular}{ll} $$ $ FO^2$ exponential model property (Gradel, Kolaitis, Vardi; 1997) \\ $$ Hence, FO^2 is $$ $ NEXPTIME-completeness $$ $ $$
 - $\hfill\square$ Even when the expressive power of FO^2 seems to be limited, there are many connection between FO^2 and modal, temporal, descriptive logics; many applications in verification and databases
 - □ FO¹ is NPTIME-complete (Folklore)

Special structures

What happens if we restrict the class of structures to words or trees?

Special structures

- What happens if we restrict the class of structures to words or trees?
- FO and MSO become decidable (Rabin; 1969).
- The complexity is non-elementary even for FO³ (Stockmeyer; 1974).
- Complexity for FO^2 on words and trees next slide

FO^2 words and trees

No additional binary predicates

- □ FO²[+1, ≤] on words is NEXPTIME-complete (Etessami, Vardi, Wilke; 2002).
- □ FO²[↓,↓⁺,→,→⁺] on trees is EXPSPACE-complete (Benaim, Benedikt, Charatonik, Kieronski, Lenhardt, Mazowiecki, Worrell; 2013).
- Additional binary predicates
 - □ $FO^{2}[+1, \leq, \tau_{bin}]$ on words is NEXPTIME-complete (Thomas Zeume, Frederik Harwath; 2016).
 - □ FO²[↓, ↓⁺, →, →⁺, τ_{bin}] on trees is EXPSPACE-complete (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- \blacksquare \downarrow child relation, \rightarrow right sibling relation, +1 successor

What next?

We will add counting quantifiers to increase expressive power.

$\mathrm C$ - logic with counting

- We add quantifiers of the form $\exists^{\leq n}, \exists^{\geq n}$ to the logic
- Numbers in quantifiers are encoded in binary (!!!)
- C=FO is of course undecidable
- Lots of problems with C²:
 - \square C² is decidable (Erich Gradel, Martin Otto, Eric Rosen, 1997)
 - C² is in 2–NEXPTIME (Leszek Pacholski, Wieslaw Szwast, Lidia Tendera; 1997)
 - \square C² is in NEXPTIME-complete (lan Pratt-Hartmann, 2004)
 - □ Simplier proof via linear programming (Ian Pratt-Hartmann, 2010)
- C¹ is NPTIME-complete (lan Pratt-Hartmann, 2007)
- What about words and trees?

C^2 words and trees

No additional binary predicates

- □ C²[+1, ≤] on words is NEXPTIME-complete (Witold Charatonik, Piotr Witkowski; 2015).
- □ C²[↓, ↓⁺, →, →⁺] on trees is EXPSPACE-complete (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- Additional binary predicates
 - □ $C^{2}[+1, \leq, \tau_{bin}]$ on words is VASS-complete (Witold Charatonik, Piotr Witkowski; 2015).
 - □ $C^2[\downarrow, \downarrow^+, \rightarrow, \rightarrow^+, \tau_{bin}]$ on trees is super hard harder than VATA (Bartosz Bednarczyk, Witold Charatonik, Emanuel Kieronski, to appear CSL 2017).
- \blacksquare \downarrow child relation, \rightarrow right brother relation, +1 successor

$Summary \\ \text{Adding counting is hard and requires years of research} \\$

Modulo counting quantifiers

- Parity is a very simple property not expressible in FO
- We add to the logic quantifiers of the form $\exists^{=a \pmod{b}}$
- Current research involves:
 - equivalences of finite structures
 - locality
 - databases with modulo queries
 - definable tree languages
 - definability of regular languages on words and its connections to algebra
 - and other topics
- Surprisingly, satisfiability almost untouched

Our current results and research plans

- FO¹_{MOD} is NPTIME-complete (Bartosz Bednarczyk; ESSLLI StuS 2017; this talk)
- FO²_{MOD} is EXPSPACE-complete over words and 2-EXPTIME complete over trees (Bartosz Bednarczyk, Witold Charatonik; 2017; submitted)
- Current research plans:
 - Modal logic with modulo modalities over various kind of frames
 - \square FO²_{MOD} on arbitrary structures
 - \Box Consider weaker frameworks like GF^2_{MOD}

Today's motivation Modal logic with modulo modalities

Modal logic ML- basics

Syntax

$$\varphi ::= p \in \Sigma \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi$$

Structures, worlds, satisfaction

 $\square \mathfrak{W}$ - structure with its domain W (worlds), Σ signature,

 $\Box \ R \subseteq W \times W \text{ access relation}$

Sometimes we additionally require relation *R* to be:

- \Box reflexive $\forall x \ R(x,x)$
- □ serial $\forall x \exists y R(x, y)$
- $\Box \text{ symmetric } \forall x \forall y \ R(x,y) \rightarrow R(y,x)$
- $\Box \text{ transitive } \forall x \forall y \forall z \ R(x,y) \land R(y,z) \rightarrow R(x,z)$
- $\Box \text{ Euclidean } \forall x \forall y \forall z \ R(x,y) \land R(x,z) \rightarrow R(y,z)$

Satisfaction relation \models . 1. $\mathfrak{W}, w \models p$, iff $w \in p^{\mathfrak{W}}$ 2. $\mathfrak{W}, w \models \neg \varphi$, iff not $\mathfrak{W}, w \models \varphi$ **3.** $\mathfrak{W}, w \models \varphi \land \psi,$ iff $\mathfrak{W}, w \models \varphi$ and $\mathfrak{W}, w \models \psi$ 4. $\mathfrak{W}, w \models \Box \psi$, iff $\mathfrak{W}, w \models \varphi$ or $\mathfrak{W}, w \models \psi$ 5. $\mathfrak{W}, w \models \Box \psi$, iff $\forall v \in W$ s. t. R(w, v) we have $\mathfrak{W}, \mathbf{v} \models \varphi$ 6. $\mathfrak{W}, w \models \Diamond \psi$, iff $\exists v \in W$ s. t. R(w, v) we have Example structure

$$\mathfrak{W} = (\Sigma = \{p, q\}, W, R)$$

15 of 27

 $\mathfrak{W}, \mathbf{v} \models \varphi$

Modulo-graded Modal logic - syntax

Syntax

$$\varphi ::= p \in \Sigma \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \diamondsuit _{\mathbf{a}, \mathbf{b}} \varphi$$

 $\mathfrak{W}, w \models \Diamond_{a,b} \varphi$, iff there exists exactly $a \mod b$ worlds $v \in W$, such that R(w, v) and $\mathfrak{W}, v \models \varphi$

Satisfiability problem

(Local) Satisfiability problem

Given a modulo-graded modal logic formula φ . Is there a structure \mathfrak{W} and a world $w \in W$, such that $\mathfrak{W}, w \models \varphi$?

• Goal of this talk: R is Euclidean \Rightarrow LocalSat is NPTIME-complete

16 of 27

Example Euclidean structure

Euclidean property: $\forall x \forall y \forall z \ R(x, y) \land R(x, z) \rightarrow R(y, z)$

Let's focus on the main topic $_{\rm FO_{MOD}^1}$ is $_{\rm NPTIME\text{-}complete}$

Language examples for FO_{MOD}^1

Every ESSLLI participant speaks English, French or German $\forall x (English(x) \lor French(x) \lor German(x))$ Someone speaks both French and German $\exists x (French(x) \land German(x))$ Every speaker of German speaks English $\forall x (German(x) \rightarrow English(x))$

The number of Polish speakers is even. $\exists^{=0 \pmod{2}} x \text{ (Polish}(x)\text{)}$

FO_{MOD}^1 - basics

Syntax

$$\varphi ::= p \in \Sigma \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall x \varphi(x) \mid \exists x \varphi(x) \mid \exists^{\bowtie (\mathsf{mod } b)} x \varphi(x)$$

- $\exists^{\bowtie a \pmod{\infty}}$ is an abbreviation of $\exists^{\bowtie a}$
- Formal description of modulo counting quantifiers

$$\mathfrak{M} \models \left(\exists^{\bowtie a \pmod{b}} x \varphi(x) \right) \stackrel{\text{def}}{\Longrightarrow} \\ \exists r \in \mathbb{Z}_b |\{x \in M : \varphi(x)\}| \equiv r \pmod{b} \land r \bowtie a, \\ \text{where } \bowtie \in \{\leq, =, \geq\}.$$

$\mathrm{FO}^1_{\mathrm{MOD}}$ - normal form

Definition

We say that a formula $\varphi \in FO_{MOD}^1$ is *flat*, if:

$$\varphi = \bigwedge_{i=1}^{n} \exists^{\bowtie_{i}a_{i}(\text{mod }b_{i})} x \psi_{i}(x),$$

where $\bowtie_i \in \{\leq, \geq\}$, each a_i is a natural number, each b_i is a natural number or infinity and all ψ_i are quantifier-free formulas.

Lemma

There exists a nondeterministic polynomial time procedure, taking as its input an FO^1_{MOD} -formula over a signature τ and producing a flat formula φ' over the same signature τ , such that φ is satisfiable iff the procedure has a run producing a satisfiable φ' .

 $\varphi = \exists^{=0 \pmod{10}} x \; French(x) \bigwedge$

 $\exists^{\geq 8 \pmod{22}} x \; German(x) \lor Spanish(x) \land$

 $\exists^{\leq 10 \pmod{\infty}} x \; German(x) \land Spanish(x) \land French(x)$

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset}, t_F, t_G, t_S, t_{FG}, t_{FS}, t_{GS}, t_{FGS}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $\varphi = \exists^{=0 \pmod{10}} x \; French(x) \bigwedge$

 $\exists^{\geq 8 \pmod{22}} x \; German(x) \lor Spanish(x) \land$

 $\exists^{\leq 10 \pmod{\infty}} x \; German(x) \land Spanish(x) \land French(x)$

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset}, t_F, t_G, t_S, t_{FG}, t_{FS}, t_{GS}, t_{FGS}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_1 \pmod{10} \land r_1 = 0$

 $\varphi = \exists^{=0 \pmod{10}} x \; French(x) \bigwedge$

 $\exists^{\geq 8 \pmod{22}} x \; German(x) \lor Spanish(x) \land$

 $\exists^{\leq 10 \pmod{\infty}} x \; German(x) \land Spanish(x) \land French(x)$

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset}, t_F, t_G, t_S, t_{FG}, t_{FS}, t_{GS}, t_{FGS}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

 $x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_1 \pmod{10} \land r_1 = 0$ $x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} \equiv r_2 \pmod{22} \land r_2 \ge 8 \land r_2 < 22$

 $\varphi = \exists^{=0 \pmod{10}} x \; French(x) \bigwedge$

 $\exists^{\geq 8 \pmod{22}} x \; German(x) \lor Spanish(x) \land$

 $\exists^{\leq 10 \pmod{\infty}} x \; German(x) \land Spanish(x) \land French(x)$

Denote the 1-types over the signature French, German, Spanish by $t_{\emptyset}, t_F, t_G, t_S, t_{FG}, t_{FS}, t_{GS}, t_{FGS}$ (the letters in the subscript indicate the positive subformulas of the type). \mathcal{E}_{ϕ} contains:

$$\begin{aligned} x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} &\equiv r_1 \pmod{10} \land r_1 = 0 \\ x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} &\equiv r_2 \pmod{22} \land r_2 \geq 8 \land r_2 < 22 \\ x_{FGS} &\equiv r_3 \pmod{10} \land r_3 \leq 10 \end{aligned}$$

From systems of congruences to system of inequalities

 $\varphi = \exists^{=0 \pmod{10} x \; French(x)} \bigwedge$ $\exists^{\geq 8 \pmod{22} x \; German(x)} \lor Spanish(x) \bigwedge$ $\exists^{\leq 10 \pmod{\infty} x \; German(x)} \land Spanish(x) \land French(x)$

 $\begin{aligned} x_F + x_{FG} + x_{FS} + x_{GS} + x_{FGS} &= r_1 + 10q_1 \wedge r_1 = 0\\ x_G + x_S + x_{FG} + x_{FS} + x_{GS} + x_{FGS} &= r_2 + 22q_2 \wedge r_2 \ge 8 \wedge r_2 < 22\\ x_{FGS} &\equiv r_3 \pmod{10} \wedge r_3 \le 10 \end{aligned}$

Useful algebraic theorems

Lemma (Small solution)

Let \mathcal{E} be a system of I inequalities with U unknowns. Assume that all coefficients are integers absolutely bounded by C. If there is a solution for the system \mathcal{E} over \mathbb{N} , there is also a solution in which the values assigned to the unknowns are all bounded by $U(IC)^{2l+1}$.

Lemma (Small system size)

Let \mathcal{E} be a system of I inequalities with integer coefficients such that the absolute value of each coefficient from \mathcal{E} is bounded by C. If \mathcal{E} has a solution over \mathbb{N} , then it has a solution over \mathbb{N} with the number of non-zero unknowns bounded by 21 log (41C).

Algorithm 1 ${\rm FO}_{\rm MOD}^1\text{-sat-test}$

Require: a FO_{MOD}^1 -formula φ

- 1: **Guess** φ' a flattened φ .
- 2: Guess which 1-types are realized at least one time.
- 3: Write the system of inequalities ${\mathcal E}$ for the guessed 1-types.
- 4: Return **True**, if \mathcal{E} has a solution over \mathbb{N} and **False** otherwise.

Theorem

The satisfiability problem for $\mathrm{FO}^1_{\mathrm{MOD}}$ is NPTIME -complete.

Questions?

Thank you for your attention