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Agenda

� Classical results on FO2 and related logics
� Logics on restricted classes of structures (words and trees)
� The main results of the paper

� namely decidability and complexity of some tree logics
� Proof ideas
� Our current research
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Facts about SAT and FO2 on arbitrary structures
� We are interested in (finite) satisfiability problems
� Models = relational structures, no constants, no functions

� Some classical results:
� FO undecidable (Church, Turing; 1930s)
� FO3 undecidable (Kahr, Moore, Wang; 1959)
� FO2 decidable (Mortimer; 1975)
� FO2 exponential model property (Gradel, Kolaitis, Vardi; 1997) -

NEXPTIME-completess
� Connection between FO2 and modal, temporal, descriptive logics;

many applications in verification and databases

Example formula:
from each element there exists a path of length 3

∀x∃y (E(x , y) ∧ ∃x (E(y , x) ∧ ∃y E(x , y)))
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Logics on trees
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Possible variations

There are several scenarios which may influence
decidability/complexity. E.g., we may consider:
� Ordered vs Unordered trees
� Ranked vs Unranked trees
� Finite vs Infinite trees
� With unary alphabet restriction (UAR) or without UAR

� precisely one unary predicate holds at each node
� . . .

In this talk: Finite, Ordered, Unranked, No UAR Trees
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Structures
Signature τ = τ0 ∪ τnav ∪ τbin

� τ0 – unary symbols (usually P,Q, etc.)
� τnav – navigational binary symbols with fixed interpretation

� unordered trees: ↓ (child), ↓+ (descendant, TC of ↓)
� ordered trees: ↓, ↓+, → (next sibling), →+ (TC of →)

� τbin – additional uninterpreted binary symbols (may be empty)

An unordered tree: P

P Q

P,Q

P,Q

An ordered tree: P

P Q

P,Q

P,Q
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Complexity results

� The complexity of FO and MSO on words and trees is
non-elementary even for FO3 (Stockmeyer; 1974).

� FO2 on finite words
� ≤ is a linear word order and +1 is its induced successor relation
� FO2[+1,≤] is NEXPTIME-complete (Etessami, Vardi, Wilke; 2002)
� Equally expressive to Unary Temporal Logic
� FO2[+1,≤, τbin] is NEXPTIME-complete too (Thomas Zeume,

Frederik Harwath 2016).
� FO2 on finite trees

� FO2[↓, ↓+,→,→+] on trees is EXPSPACE-complete (Benaim,
Benedikt, Charatonik, Kieronski, Lenhardt, Mazowiecki, Worrell;
2013).

� Equally expressive to Navigational XPath.
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Our results
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Our settings

We work with two extensions of FO2[↓, ↓+,→,→+].

� FO2[↓, ↓+,→,→+, τbin]– extends FO2[↓, ↓+,→,→+] with
additional uninterpreted binary symbols (τbin)

� C2[↓, ↓+,→,→+]– extends FO2[↓, ↓+,→,→+] with counting
quantifiers of the form ∃≤n, ∃≥n (n encoded in binary)

� We also combine these logic into C2[↓, ↓+,→,→+, τbin].
� Recall that:

� ↓ is a child relation
� ↓+ is a descendant relation
� → is a right sibling relation
� →+ is it’s transitive closure
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Our contribution

Theorem (FINSAT)
The finite satisfiability problem for FO2[↓, ↓+,→,→+, τbin]
and C2[↓, ↓+,→,→+] is EXPSPACE-complete.

Theorem (Expressive power)

� FO2[↓, ↓+,→,→+] and C2[↓, ↓+,→,→+] are equally expressive.
� C2[↓, ↓+] is more expressive than FO2[↓, ↓+].

Theorem (Combining two extensions)
The finite satisfiability problem for C2[↓, ↓+,→,→+, τbin] is at least
as hard as checking non-emptiness for VATA/BVASS.

11 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Our contribution

Theorem (FINSAT)
The finite satisfiability problem for FO2[↓, ↓+,→,→+, τbin]
and C2[↓, ↓+,→,→+] is EXPSPACE-complete.

Theorem (Expressive power)

� FO2[↓, ↓+,→,→+] and C2[↓, ↓+,→,→+] are equally expressive.
� C2[↓, ↓+] is more expressive than FO2[↓, ↓+].

Theorem (Combining two extensions)
The finite satisfiability problem for C2[↓, ↓+,→,→+, τbin] is at least
as hard as checking non-emptiness for VATA/BVASS.

11 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Our contribution

Theorem (FINSAT)
The finite satisfiability problem for FO2[↓, ↓+,→,→+, τbin]
and C2[↓, ↓+,→,→+] is EXPSPACE-complete.

Theorem (Expressive power)

� FO2[↓, ↓+,→,→+] and C2[↓, ↓+,→,→+] are equally expressive.
� C2[↓, ↓+] is more expressive than FO2[↓, ↓+].

Theorem (Combining two extensions)
The finite satisfiability problem for C2[↓, ↓+,→,→+, τbin] is at least
as hard as checking non-emptiness for VATA/BVASS.

11 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Proof ideas
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Expressive power
Theorem
C2[↓, ↓+] is more expressive than FO2[↓, ↓+].

Proof.

T3 T2

Consider the formula ∃x ∃≥3y x ↓+ y . Easy to observe that
Duplicator has a simple winning strategy in the standard
two-pebble game of any length played on T3 and T2.

Theorem
FO2[↓, ↓+,→,→+] and C2[↓, ↓+,→,→+] are equally expressive.

Proof.
Structural induction with elimination of counting quantifiers.
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Finite satisfiability cooking recipe

� Step 1. Transform your formula into a normal form
� Step 2. Desing a right notion of a type

� And prove that your notion is ”correct” . . .
� Step 3. Show small model property

� Restrict your attention to trees with:
� exponential degree of every nodes and
� exponentially long paths

� Do it by cutting out too long ↓ and →-paths
� Step 4. Present an alternating algorithm

� in this case AEXPTIME

During this talk
� we will concentrate on C2[↓, ↓+,→,→+]

� because that was my bachelor thesis
� successfully defended in Feb 2017 :)
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Order formulas

Order formulas specify the relative position of a pair of distinct
elements in a tree. Assuming τnav = {↓, ↓+,→,→+} there are ten
of them:
� θ= : x = y ,
� θ↓ : x↓y ,
� θ↑ : y↓x ,
� θ↓↓+ : x↓+y ∧ ¬(x↓y),
� θ↑↑+ : y↓+x ∧ ¬(y↓x),
� θ→, θ⇒+ , θ⇔+ , θ← similar to the above for sibling relations
� θ 6∼ : x 6∼y , (none of the above positions hold)
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Scott normal form for C2[↓, ↓+,→,→+]

� We translate a C2[↓, ↓+,→,→+] formula into the following shape:

ϕ = ∀x∀y χ(x , y) ∧
∧
i∈I

∀x∃./Ci y χi(x , y)

� ./i ∈ {≤,≥} and the formulas χ, χi are quantifier-free
� Main property: quantifier depth is at most two
� Such form is polynomially computable and
� requires introducing some fresh unary symbols

16 of 24
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Atomic 1-types
� 1-type over a signature τ0 is simply a subset of τ0.
� We usually denote 1-types by α and their set by α
� A 1-type α can be identified with the conjunction

tp(x) =
∧

P∈α
P(x) ∧

∧
Q 6∈α

¬Q(x)

� the number of 1-types is bounded exponentially in |τ |
� Example:

Unary symbols τ0 =

{
,

}
=

{
Green(),Red()

}

Possible 1-types ατ0 =

{
, , ,

}
� 1-type stores the information about a single node
17 of 24
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A new ingredient - Full type - definition
� Recall that:

� 1-types α store the color of a node

tp(x) =
∧

P∈α

P(x) ∧
∧

Q 6∈α

¬Q(x)

� Positions (assuming τvav = {↓, ↓+,→,→+})

Θ = {θ=, θ↓, θ↑, θ↓↓+ , θ↑↑+ , θ→, θ←, θ⇒+ , θ⇔+ , θ 6∼}

� C-Full type stores the information about nodes, at the relative
positions and their colors, from the vertex point of view.
Formally:

C-ftp(x) :: Θ → α → {0,1,2, . . . ,C,C + 1,∞}

18 of 24
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Full type example

α =

{
, , ,

}
ftp(c) =?

a

b

e

i

c

f

j

k l

g h

d

θ= 0 0 0 1
θ↓ 1 0 2 0
θ↓↓+ 0 1 2 0
θ 6∼ 0 0 1 1
. . .
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Key lemma for the proof

Lemma (Pumping lemma)
Let ϕ be a normal form formula and let C = maxi Ci from the
normal form. Let T |= ϕ. If there are two nodes on a root-to-leaf
path of T having the same C-full-type then we can remove all the
vertices between them with subtrees rooted at them and obtain a
shorter model T′.

ui uj
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C2[↓, ↓+,→,→+] - further steps in the proof
� Unfortunately the number of different full types are

doubly-exponential, so we obtain only doubly-exponential
bound on the length of paths and degree of nodes.

� We introduced reduced full types:
� We join below, above and free positions in the following way:

A = θ↑ ∪ θ↑↑+ ,B = θ↓ ∪ θ↓↓+ ,F =
⋃

other

C-rftp(x) :: {A,B,F} → α → {0,1,2, . . . ,C,C + 1,∞}
� There are still doubly exponentially many reduced full types.
� But they behave monotonically along root-to-leaf paths.
� There are some problems with pumping lemma - details in the

paper.

� Conclusion: Exponentially long → and ↓-paths in trees.
� Next step: Algorithm - see the paper or ask for more details
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Related logics over trees - current research

The following retain relatively low complexity
� F1 – one-dimensional fragment

� fragment of FO in which blocks of existential (universal)
quantifiers leave at most one variable free

� ∃y1, . . . , ykϕ(x , y1, . . . , yk )
� 2-EXPTIME-complete, EXPSPACE-complete if the only navigational

symbol is ↓+

� Just presented at MFCS 2017 in Aalborg :)

� FO2
MOD– FO2 + modulo counting quantifiers

� allows quantifiers of the form ∃=k(mod l) y ϕ(x , y)
� 2-EXPTIME-complete even when k , ls are binary coded
� Submitted.

� The same decidability schema as for C2!

22 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Related logics over trees - current research

The following retain relatively low complexity
� F1 – one-dimensional fragment

� fragment of FO in which blocks of existential (universal)
quantifiers leave at most one variable free

� ∃y1, . . . , ykϕ(x , y1, . . . , yk )
� 2-EXPTIME-complete, EXPSPACE-complete if the only navigational

symbol is ↓+

� Just presented at MFCS 2017 in Aalborg :)
� FO2

MOD– FO2 + modulo counting quantifiers
� allows quantifiers of the form ∃=k(mod l) y ϕ(x , y)
� 2-EXPTIME-complete even when k , ls are binary coded
� Submitted.

� The same decidability schema as for C2!

22 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Questions?

23 of 24



Introduction Tree structures Our contribution Expressive power Satisfiability

Thank you for your attention
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