Extending Two-Variable Logic on Trees (joint work with Witold Charatonik and Emanuel Kieroński)

Bartosz Bednarczyk

bbednarczyk@stud.cs.uni.wroc.pl Institute of Computer Science University of Wrocław Wrocław, Poland

CSL 2017 Stockholm, August 24, 2017

Agenda

- Classical results on \mathcal{FO}^2 and related logics
- Logics on restricted classes of structures (words and trees)
- The main results of the paper
 - namely decidability and complexity of some tree logics
- Proof ideas
- Our current research

Historical results

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ *FO* undecidable (Church, Turing; 1930s)

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ *FO* undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - □ *FO*² exponential model property (Gradel, Kolaitis, Vardi; 1997) NExPTIME-completess

- We are interested in (finite) satisfiability problems
- Models = relational structures, no constants, no functions
- Some classical results:
 - □ *FO*_undecidable (Church, Turing; 1930s)
 - $\square \mathcal{FO}^3$ undecidable (Kahr, Moore, Wang; 1959)
 - $\square \mathcal{FO}^2$ decidable (Mortimer; 1975)
 - □ *FO*² exponential model property (Gradel, Kolaitis, Vardi; 1997) NExPTIME-completess
 - □ Connection between \mathcal{FO}^2 and modal, temporal, descriptive logics; many applications in verification and databases

Example formula:

from each element there exists a path of length 3

$$\forall x \exists y (E(x, y) \land \exists x (E(y, x) \land \exists y E(x, y)))$$

Logics on trees

Possible variations

There are several scenarios which may influence decidability/complexity. E.g., we may consider:

- Ordered vs Unordered trees
- Ranked vs Unranked trees
- Finite vs Infinite trees
- With unary alphabet restriction (UAR) or without UAR
 precisely one unary predicate holds at each node

In this talk: Finite, Ordered, Unranked, No UAR Trees

. . .

Structures

Signature $\tau = \tau_0 \cup \tau_{nav} \cup \tau_{bin}$

- τ_0 unary symbols (usually *P*, *Q*, etc.)
- τ_{nav} navigational binary symbols with fixed interpretation
 unordered trees: ↓ (child), ↓₊ (descendant, TC of ↓)
 ordered trees: ↓, ↓₊, → (next sibling), →⁺ (TC of →)
- τ_{bin} additional *uninterpreted* binary symbols (may be empty)

Complexity results

The complexity of *FO* and *MSO* on words and trees is non-elementary even for *FO*³ (Stockmeyer; 1974).

Complexity results

- The complexity of *FO* and *MSO* on words and trees is non-elementary even for *FO*³ (Stockmeyer; 1974).
- *FO*² on finite words
 - $\square \leq$ is a linear word order and +1 is its induced successor relation
 - $\square \mathcal{FO}^2[+1, \leq]$ is **NEXPTIME**-complete (Etessami, Vardi, Wilke; 2002)
 - Equally expressive to Unary Temporal Logic
 - □ $\mathcal{FO}^2[+1, \leq, \tau_{bin}]$ is NEXPTIME-complete too (Thomas Zeume, Frederik Harwath 2016).

Complexity results

- The complexity of *FO* and *MSO* on words and trees is non-elementary even for *FO*³ (Stockmeyer; 1974).
- *FO*² on finite words
 - $\square \leq$ is a linear word order and +1 is its induced successor relation
 - $\square \mathcal{FO}^2[+1, \leq]$ is **NEXPTIME**-complete (Etessami, Vardi, Wilke; 2002)
 - Equally expressive to Unary Temporal Logic
 - □ $\mathcal{FO}^2[+1, \leq, \tau_{bin}]$ is NEXPTIME-complete too (Thomas Zeume, Frederik Harwath 2016).

• \mathcal{FO}^2 on finite trees

- □ $\mathcal{FO}^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+]$ on trees is ExpSpace-complete (Benaim, Benedikt, Charatonik, Kieronski, Lenhardt, Mazowiecki, Worrell; 2013).
- □ Equally expressive to Navigational XPath.

Our results

Our settings

We work with two extensions of $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+].$

- *FO*²[↓,↓₊,→,→⁺, τ_{bin}]− extends *FO*²[↓,↓₊,→,→⁺] with additional uninterpreted binary symbols (τ_{bin})
- C²[↓, ↓₊, →, →⁺]− extends *FO*²[↓, ↓₊, →, →⁺] with counting quantifiers of the form ∃^{≤n}, ∃^{≥n} (n encoded in binary)
- We also combine these logic into $C^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+, \tau_{bin}]$.

Recall that:

- $\Box \downarrow$ is a child relation
- $\Box \downarrow^+$ is a descendant relation
- $\hfill\square \rightarrow$ is a right sibling relation

Our contribution

Theorem (FINSAT)

The finite satisfiability problem for $\mathcal{FO}^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+, \tau_{bin}]$ and $\mathcal{C}^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+]$ is ExpSpace-complete.

Our contribution

Theorem (FINSAT)

The finite satisfiability problem for $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+,\tau_{bin}]$ and $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ is ExpSpace-complete.

Theorem (Expressive power)

- $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ and $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ are equally expressive.
- $C^2[\downarrow,\downarrow_+]$ is more expressive than $\mathcal{FO}^2[\downarrow,\downarrow_+]$.

Our contribution

Theorem (FINSAT)

The finite satisfiability problem for $\mathcal{FO}^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+, \tau_{bin}]$ and $\mathcal{C}^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+]$ is ExpSpace-complete.

Theorem (Expressive power)

- $\mathcal{FO}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ and $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ are equally expressive.
- $C^{2}[\downarrow,\downarrow_{+}]$ is more expressive than $\mathcal{FO}^{2}[\downarrow,\downarrow_{+}]$.

Theorem (Combining two extensions)

The finite satisfiability problem for $C^2[\downarrow, \downarrow_+, \rightarrow, \rightarrow^+, \tau_{bin}]$ is at least as hard as checking non-emptiness for VATA/BVASS.

Proof ideas

Expressive power

Theorem

 $\mathcal{C}^2[\downarrow,\downarrow_+]$ is more expressive than $\mathcal{FO}^2[\downarrow,\downarrow_+].$

Expressive power

Theorem $C^2[\downarrow,\downarrow_+]$ is more expressive than $\mathcal{FO}^2[\downarrow,\downarrow_+]$. Proof.

Consider the formula $\exists x \exists^{\geq 3} y x \downarrow^+ y$. Easy to observe that Duplicator has a simple winning strategy in the standard two-pebble game of any length played on \mathfrak{T}_3 and \mathfrak{T}_2 .

Expressive power

Theorem $C^2[\downarrow,\downarrow_+]$ is more expressive than $\mathcal{FO}^2[\downarrow,\downarrow_+]$. Proof.

Consider the formula $\exists x \exists^{\geq 3} y x \downarrow^+ y$. Easy to observe that Duplicator has a simple winning strategy in the standard two-pebble game of any length played on \mathfrak{T}_3 and \mathfrak{T}_2 .

Theorem

$$\mathcal{FO}^{2}[\downarrow,\downarrow_{+},\rightarrow,\rightarrow^{+}]$$
 and $\mathcal{C}^{2}[\downarrow,\downarrow_{+},\rightarrow,\rightarrow^{+}]$ are equally expressive.

Proof.

Structural induction with elimination of counting quantifiers.

Step 1. Transform your formula into a normal form

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type

And prove that your notion is "correct"

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type
 And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - exponential degree of every nodes and
 - exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and $\rightarrow\mbox{-paths}$

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type
 And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - exponential degree of every nodes and
 - exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and $\rightarrow\mbox{-paths}$
- Step 4. Present an alternating algorithm
 - □ in this case AEXPTIME

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type
 And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - exponential degree of every nodes and
 - exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and $\rightarrow\mbox{-paths}$
- Step 4. Present an alternating algorithm
 - □ in this case AEXPTIME

During this talk

• we will concentrate on $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type
 And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - exponential degree of every nodes and
 - exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and $\rightarrow\mbox{-paths}$
- Step 4. Present an alternating algorithm in this case AEXPTIME

During this talk

- we will concentrate on $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$
- because that was my bachelor thesis

- Step 1. Transform your formula into a normal form
- Step 2. Desing a right notion of a type
 And prove that your notion is "correct" ...
- Step 3. Show small model property
 - Restrict your attention to trees with:
 - exponential degree of every nodes and
 - exponentially long paths
 - $\hfill\square$ Do it by cutting out too long \downarrow and $\rightarrow\mbox{-paths}$
- Step 4. Present an alternating algorithm
 in this case AEXPTIME

During this talk

- we will concentrate on $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$
- because that was my bachelor thesis
- successfully defended in Feb 2017 :) ^{14 of 24}

Order formulas

Order formulas specify the relative position of a pair of distinct elements in a tree. Assuming $\tau_{nav} = \{\downarrow, \downarrow_+, \rightarrow, \rightarrow^+\}$ there are ten of them:

- $\bullet \ \theta_{=} \quad : x = y,$
- θ_{\downarrow} : $x \downarrow y$,
- θ_{\uparrow} : $y \downarrow x$,
- $\theta_{\downarrow\downarrow_+}$: $x_{\downarrow_+}y \land \neg(x_{\downarrow}y)$,
- $\theta_{\uparrow\uparrow^+}$: $y \downarrow_+ x \land \neg (y \downarrow x)$,
- $\theta_{\rightarrow}, \theta_{\rightrightarrows^+}, \theta_{\Leftarrow^+}, \theta_{\leftarrow}$ similar to the above for sibling relations
- θ_{γ} : $x \not\sim y$, (none of the above positions hold)

Scott normal form for $\mathcal{C}^2[{\downarrow},{\downarrow}_+,{\rightarrow},{\rightarrow}^+]$

• We translate a $\mathcal{C}^2[\downarrow,\downarrow_+,\rightarrow,\rightarrow^+]$ formula into the following shape:

$$\varphi = \forall \mathbf{x} \forall \mathbf{y} \ \chi(\mathbf{x}, \mathbf{y}) \land \bigwedge_{i \in I} \forall \mathbf{x} \exists^{\bowtie C_i} \mathbf{y} \ \chi_i(\mathbf{x}, \mathbf{y})$$

- $\bowtie_i \in \{\leq, \geq\}$ and the formulas χ, χ_i are quantifier-free
- Main property: quantifier depth is at most two
- Such form is polynomially computable and
- requires introducing some fresh unary symbols

Atomic 1-types

- 1-type over a signature τ_0 is simply a subset of τ_0 .
- We usually denote 1-types by α and their set by α
- A 1-type α can be identified with the conjunction

$$tp(x) = igwedge_{P\inlpha} P(x) \wedge igwedge_{Q
otin lpha}
eg Q(x)$$

- the number of 1-types is bounded exponentially in $|\tau|$
- Example:

Unary symbols
$$au_0 = \left\{ \bigcirc, \bigcirc \right\} = \left\{ \mathsf{Green}(), \mathsf{Red}() \right\}$$

Possible 1-types
$$oldsymbol{lpha}_{ au_0} = \left\{ \bigcirc, oldsymbol{\Theta}, oldsymbol{\Theta}, oldsymbol{\Theta}
ight\}$$

1-type stores the information about a single node
 17 of 24

A new ingredient - Full type - definition

Recall that:

 $\ \square$ 1-types lpha store the color of a node

$$tp(x) = \bigwedge_{P \in lpha} P(x) \land \bigwedge_{Q \notin lpha} \neg Q(x)$$

□ Positions (assuming $\tau_{vav} = \{\downarrow, \downarrow^+, \rightarrow, \rightarrow^+\}$)

$$\Theta = \{\theta_{=}, \theta_{\downarrow}, \theta_{\uparrow}, \theta_{\downarrow\downarrow_{+}}, \theta_{\uparrow\uparrow^{+}}, \theta_{\rightarrow}, \theta_{\leftarrow}, \theta_{\rightrightarrows^{+}}, \theta_{\Leftarrow^{+}}, \theta_{\not\sim}\}$$

A new ingredient - Full type - definition

Recall that:

 $\ \square$ 1-types lpha store the color of a node

$$tp(x) = \bigwedge_{P \in lpha} P(x) \land \bigwedge_{Q \notin lpha} \neg Q(x)$$

□ Positions (assuming $\tau_{vav} = \{\downarrow, \downarrow^+, \rightarrow, \rightarrow^+\}$)

$$\Theta = \{\theta_{=}, \theta_{\downarrow}, \theta_{\uparrow}, \theta_{\downarrow\downarrow\downarrow_{+}}, \theta_{\uparrow\uparrow^{+}}, \theta_{\rightarrow}, \theta_{\leftarrow}, \theta_{\rightrightarrows^{+}}, \theta_{\rightleftharpoons^{+}}, \theta_{\nsim}\}$$

 C-Full type stores the information about nodes, at the relative positions and their colors, from the vertex point of view.
 Formally:

$$C$$
-ftp $(x) :: \Theta \to \alpha \to \{0, 1, 2, \dots, C, C+1, \infty\}$

Full type example

Key lemma for the proof

Lemma (Pumping lemma)

Let φ be a normal form formula and let $C = \max_i C_i$ from the normal form. Let $\mathfrak{T} \models \varphi$. If there are two nodes on a root-to-leaf path of \mathfrak{T} having the same C-full-type then we can remove all the vertices between them with subtrees rooted at them and obtain a shorter model \mathfrak{T}' .

 $\mathcal{C}^{2}[\downarrow,\downarrow_{\scriptscriptstyle +},\rightarrow,\rightarrow^{\scriptscriptstyle +}]$ - further steps in the proof

- Unfortunately the number of different full types are doubly-exponential, so we obtain only doubly-exponential bound on the length of paths and degree of nodes.
- We introduced reduced full types:
 - □ We join below, above and free positions in the following way:

$$A = \theta_{\uparrow} \cup \theta_{\uparrow\uparrow^+}, B = \theta_{\downarrow} \cup \theta_{\downarrow\downarrow_+}, F = \bigcup$$
 other

 $\textit{C-rftp}(\textit{x}) :: \{\textit{A},\textit{B},\textit{F}\} \rightarrow \alpha \rightarrow \{0,1,2,\ldots,\textit{C},\textit{C}+1,\infty\}$

- There are still doubly exponentially many reduced full types.
- □ But they behave monotonically along root-to-leaf paths.
- □ There are some problems with pumping lemma details in the paper.

 $\mathcal{C}^2[{\downarrow},{\downarrow_{\scriptscriptstyle +}},{\rightarrow},{\rightarrow^{\scriptscriptstyle +}}]$ - further steps in the proof

- Unfortunately the number of different full types are doubly-exponential, so we obtain only doubly-exponential bound on the length of paths and degree of nodes.
- We introduced reduced full types:
 - □ We join below, above and free positions in the following way:

$$A = \theta_{\uparrow} \cup \theta_{\uparrow\uparrow^+}, B = \theta_{\downarrow} \cup \theta_{\downarrow\downarrow_+}, F = \bigcup$$
 other

 $\textit{C-rftp}(\textit{x}) :: \{\textit{A},\textit{B},\textit{F}\} \rightarrow \alpha \rightarrow \{0,1,2,\ldots,\textit{C},\textit{C}+1,\infty\}$

- There are still doubly exponentially many reduced full types.
- □ But they behave monotonically along root-to-leaf paths.
- □ There are some problems with pumping lemma details in the paper.
- Conclusion: Exponentially long \rightarrow and \downarrow -paths in trees.
- Next step: Algorithm see the paper or ask for more details ^{21 of 24}

Related logics over trees - current research

The following retain relatively low complexity

- \mathcal{F}_1 one-dimensional fragment
 - □ fragment of *FO* in which blocks of existential (universal) quantifiers leave at most one variable free
 - $\Box \exists y_1, \ldots, y_k \varphi(x, y_1, \ldots, y_k)$
 - □ 2-EXPTIME-complete, EXPSPACE-complete if the only navigational symbol is ↓₊
 - □ Just presented at MFCS 2017 in Aalborg :)

Related logics over trees - current research

The following retain relatively low complexity

- \mathcal{F}_1 one-dimensional fragment
 - □ fragment of *FO* in which blocks of existential (universal) quantifiers leave at most one variable free
 - $\Box \exists y_1,\ldots,y_k\varphi(x,y_1,\ldots,y_k)$
 - □ 2-EXPTIME-complete, EXPSPACE-complete if the only navigational symbol is ↓₊
 - □ Just presented at MFCS 2017 in Aalborg :)
- $FO_{MOD}^2 \mathcal{FO}^2$ + modulo counting quantifiers
 - □ allows quantifiers of the form $\exists^{=k \pmod{l}} y \varphi(x, y)$
 - □ 2-EXPTIME-complete even when *k*, *l*s are binary coded
 - Submitted.
- The same decidability schema as for C²!

Questions?

Thank you for your attention