
Database-Inspired Reasoning Problems
in Description Logics With Path Expressions

Supervised by Sebastian Rudolph (TU Dresden) and Emanuel Kieroński (University of Wrocław)

Bartosz Jan Bednarczyk

Database-Inspired Reasoning Problems
in Description Logics With Path Expressions

Supervised by Sebastian Rudolph (TU Dresden) and Emanuel Kieroński (University of Wrocław)

Bartosz Jan Bednarczyk
Query languages? Formal verification? Formal languages? Complexity?

Warning! More mathematics than computer science is coming!

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)

MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)

friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)

parent(LilyPotter, HarryPotter)
. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”

MuggleBorn ⊑ ∀parent.¬Wizard
“Voldemort is a descendant of Salazar Slytherin.”

{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}
. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”

{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}
. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?

1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.

2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.

3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.

4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query

Graph query
Give me all Muggle-born relatives of Harry.

RelationalDB query
Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.

RelationalDB query
Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Our Setting: Incomplete Databases, Description Logics, and Queries

Incomplete Database (ABox)

Wizard(HarryPotter)
MuggleBorn(HermioneGranger)
friends(HarryPotter, RonWeasley)
parent(LilyPotter, HarryPotter)

. . .

External Knowledge (TBox)

“A Muggle-born person has only non-wizard parents.”
MuggleBorn ⊑ ∀parent.¬Wizard

“Voldemort is a descendant of Salazar Slytherin.”
{Voldemort} ⊑ ∃parent+.{SalazarSlytherin}

. . .

Why?
1. Real data can be too big.
2. Standardization of terminology.
3. Automated reasoning.
4. Story of Success: SNOMED CT.

User’s query
Graph query

Give me all Muggle-born relatives of Harry.
RelationalDB query

Give me names and houses of Harry’s friends.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 1 / 10

Database-Inspired Reasoning Problems

1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.

IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!

• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.

• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?
IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries
Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries
Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!

T := “everyone has a parent”.
q := ∃x parent+(x , x).

We have T |=fin q but T ̸|= q.
. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).

We have T |=fin q but T ̸|= q.
. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. . .

. . . |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. . .

. . . |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. . .

. . . |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

.

|= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Database-Inspired Reasoning Problems
1. Satisfiability (consistency) problem.
IN: ABox A (DB) + TBox T (Knowledge)
OUT: Is there an extension of A satisfying T ?

A

A+ A+
A+ |= T

• No a priori bounds on sizes of such extensions!
• Easily undecidable or at least computationally hard.
• Use of model and automata theory: nicely-shaped models.

2. Certain query answering.

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Do all extensions of A satisfying T match q?

IN: ABox A (DB) + TBox T (Knowledge) + query q
OUT: Is there an extension of A satisfying T but not q?

̸|= q

• (Unions of) Conjunctive Queries

Tell me the names and houses of Harry’s friends.

friends(n, HarryPotter) ∧ belongsTo(n, h) ∧ House(h)

• (Unions of) Conj. 2-way Regular Path Queries

Give me all Muggle-born relatives of Harry.

∃a parent∗(HarryPotter, a) ∧ (parent−)∗(a, n) ∧ MuggleBorn(n)

Complexity measures: combined (everything as input) vs data (all but data is fixed)

Makes a difference and a challange!
T := “everyone has a parent”.

q := ∃x parent+(x , x).
We have T |=fin q but T ̸|= q.

. |= qx

0 1 2 3 4 . . . ̸|= q
Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 2 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]

• Basic description logic ALC
Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female

• (Hb) role combinations
hasParent = hasMother ∪ hasFather

• (Self) operator
Narcissist ⊑ ∃loves.Self

• (reg) regular path expressions
PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female

• (Hb) role combinations
hasParent = hasMother ∪ hasFather

• (Self) operator
Narcissist ⊑ ∃loves.Self

• (reg) regular path expressions
PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather

• (Self) operator
Narcissist ⊑ ∃loves.Self

• (reg) regular path expressions
PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self

• (reg) regular path expressions
PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting

isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?

• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability

• Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language

• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC

• ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Description Logics with Path Expressions, a.k.a. the Z family [2009]
• Basic description logic ALC

Wizard ⊑ ¬Muggle, ⊤ ⊑ ∃hasParent.Male ⊓ ∃hasParent.Female
• (Hb) role combinations

hasParent = hasMother ∪ hasFather
• (Self) operator

Narcissist ⊑ ∃loves.Self
• (reg) regular path expressions

PureBloodWizard ⊑ ∀isParent+.PureBloodWizard

ALCHbSelf
reg

a.k.a. Z

• (I) inverses, (O) nominals, and (Q) counting
isAncestor = isDescendant−, {Voldemort} ⊑ (=7 created).Horcrux

Motivation?
• On the verge of decidability • Encodes OWL 2, W3C Web Ontology Language
• Generalize positive results for ALC • ALCreg is a notational variant of Propositional Dynamic Logic

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 3 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database

Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)

Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ.

• Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions
Incomplete Database Knowledge (Z family of DLs)Query (Relational vs Graph)

• Complexity of (fragments of) ZOIQ. • Uniform approach: cover many existing DLs in one-go.

Our main results?
Querying Z (ALCHbSelf

reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award
Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 4 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?

1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying

2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?

• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions

• Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints

• Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator

• Presburger counting • Boolean role combinations • Fixed-points • More???
Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting

• Boolean role combinations • Fixed-points • More???
Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations

• Fixed-points • More???
Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points

• More???
Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?

Theorem (Part I of the Dissertation, Both Semantics)
If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

More general question: what features Θ make CQ answering hard for ALCΘ?
1. Compl. of SAT = Compl. of Querying 2. Compl. of SAT < Compl. of Querying

• (H) role inclusions
hasMother ⊆ hasParent

(H)

• (Q) counting
(=7 created).Horcrux

(Q)

• (S) transitivity
isAncestor relation is transitive

(S)

• (I) inverses
isParent is the inverse of isChild role

(I)

• (O) nominals
{Voldemort}

(O)

How about other features Θ?
• Regular expressions • Statistical constraints • Self Operator
• Presburger counting • Boolean role combinations • Fixed-points • More???

Is there any pattern behind this?
Theorem (Part I of the Dissertation, Both Semantics)

If ALCΘ has locally-forward models then SAT = QueryEntl.
The Self operator is bad. Querying ZQ without Self is ExpTime-compl.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 5 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)

• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.

• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then,

there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots,

(b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots,

(c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.

Partition Π of q ⇝ a KB KW
Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma

(A, T) ̸|= q if and only if (A, T) ∪ ⋃
all

KW
Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if

(A, T) ∪ ⋃
all

KW
Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable.

⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝

Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

CQ Entailment over Locally-Forward Extensions of ALC (Simplified For This Talk)
• Input: an ABox A, a TBox T , and a conjunctive query q.
• Proviso: (A, T) ̸|= q then, there is a locally-forward model of (A, T) violating q.

A match of q partition query variables into:

q

(a) roots, (b) trees dangling from roots, (c) trees far from roots.
Partition Π of q ⇝ a KB KW

Π “blocking” all matches yielding such a partition

If |= KW
Π then

Key Lemma
(A, T) ̸|= q if and only if (A, T) ∪ ⋃

all
KW

Π is satisfiable. ⇝ Effective reduction

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 6 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?

• Querying the Z (a.k.a. ALCHbSelf
reg) family is 2ExpTime-hard.

• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.

• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?

• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.

• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.

• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Conjunctive query entailment over ALCSelf TBoxes is 2ExpTime-hard.

Consequences?
• Querying the Z (a.k.a. ALCHbSelf

reg) family is 2ExpTime-hard.
• Fluted Guarded Fragment with = has 2ExpTime-hard CQ querying (contrasts [B’21, JELIA])

Proof scheme?
• A reduction from the acceptance problem for the empty-tape AExpSpace TMs.

• The models of an ALCSelf-KB KM describe possibly faulty runs of a given ATM M.
• A CQ qM detects mismatches in the consecutive transitions.
• KM ̸|= qM iff there is a (non-faulty) accepting run of M.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 7 / 10

Trick no. 1: A single root-to-leaves conjunctive query

Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)
For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 1: A single root-to-leaves conjunctive query

Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)
For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 1: A single root-to-leaves conjunctive query
Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)
For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 1: A single root-to-leaves conjunctive query
Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)

For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 1: A single root-to-leaves conjunctive query
Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)
For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 1: A single root-to-leaves conjunctive query
Goal: Design a CQ q(x , y) such that x matches the root and y matches any of the leaves.

∃x1∃x2∃x3 Lvl0(x) ∧ ℓ1(x , x1) ∧ r1(x1, x2) ∧ ℓ2(x2, x3) ∧ r2(x3, y) ∧ Lvl2(y)
For brevity we write: (Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y).

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 8 / 10

Trick no. 2: Synchronisation of leaves among two trees

Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees

Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:

(Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; ℓ−

1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)
Impose that they have the same first bit of their address:

∧ (r−
2 ; ℓ−

2 ; ℓ−
1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; next; r1; ℓ2; r2)(x , y)
as well as the same second bit of their address:

∧ (ℓ−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:

∧ (r−
2 ; ℓ−

2 ; ℓ−
1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; next; r1; ℓ2; r2)(x , y)
as well as the same second bit of their address:

∧ (ℓ−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:

∧ (ℓ−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Trick no. 2: Synchronisation of leaves among two trees
Goal: Design a CQ q(x , y) that matches leaves x , y with equal addresses.

Select two leaves located in different trees:
(Lvl2?; r−

2 ; ℓ−
2 ; r−

1 ; ℓ−
1 ; Lvl0?; next; Lvl0?; ℓ1; r1; ℓ2; r2; Lvl2?)(x , y)

Impose that they have the same first bit of their address:
∧ (r−

2 ; ℓ−
2 ; ℓ−

1 ; next; ℓ1; ℓ2; r2; Lvl2?; r−
2 ; ℓ−

2 ; r−
1 ; next; r1; ℓ2; r2)(x , y)

as well as the same second bit of their address:
∧ (ℓ−

2 ; r−
1 ; ℓ−

1 ; next; ℓ1; r1; ℓ2; Lvl2?; r−
2 ; r−

1 ; ℓ−
1 ; next; ℓ1; r1; r2)(x , y)

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 9 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Sebastian Rudolph (TU Dresden) Emanuel Kieroński (Univ. of Wrocław)

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award
Other relevant statistics about the PhD Candidate

• Dissertation = 6 conference papers (4 A*-ranked papers!) + 3 journal papers

• Best student paper awards at JELIA 2021 and JELIA 2023.

• PI in own prestigious polish research grant 2018–2022 realised with distinction.

• Polish Ministry of Science Award for Outstanding Young Scientists (≈ 45k euro).

• Supervised 8 students resulting in 3 joint publications.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 10 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Sebastian Rudolph (TU Dresden) Emanuel Kieroński (Univ. of Wrocław)

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award
Other relevant statistics about the PhD Candidate

• Dissertation = 6 conference papers (4 A*-ranked papers!) + 3 journal papers

• Best student paper awards at JELIA 2021 and JELIA 2023.

• PI in own prestigious polish research grant 2018–2022 realised with distinction.

• Polish Ministry of Science Award for Outstanding Young Scientists (≈ 45k euro).

• Supervised 8 students resulting in 3 joint publications.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 10 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Sebastian Rudolph (TU Dresden) Emanuel Kieroński (Univ. of Wrocław)

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award
Other relevant statistics about the PhD Candidate

• Dissertation = 6 conference papers (4 A*-ranked papers!) + 3 journal papers

• Best student paper awards at JELIA 2021 and JELIA 2023.

• PI in own prestigious polish research grant 2018–2022 realised with distinction.

• Polish Ministry of Science Award for Outstanding Young Scientists (≈ 45k euro).

• Supervised 8 students resulting in 3 joint publications.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 10 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Sebastian Rudolph (TU Dresden) Emanuel Kieroński (Univ. of Wrocław)

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award

Other relevant statistics about the PhD Candidate
• Dissertation = 6 conference papers (4 A*-ranked papers!) + 3 journal papers

• Best student paper awards at JELIA 2021 and JELIA 2023.

• PI in own prestigious polish research grant 2018–2022 realised with distinction.

• Polish Ministry of Science Award for Outstanding Young Scientists (≈ 45k euro).

• Supervised 8 students resulting in 3 joint publications.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 10 / 10

Database-Inspired Reasoning Problems in Description Logics With Path Expressions

Sebastian Rudolph (TU Dresden) Emanuel Kieroński (Univ. of Wrocław)

Querying Z (ALCHbSelf
reg)?

ZQ without Self ∈ Exp
ALCSelf is 2Exp-hard

SAT of (tamed) ZOIQ?

SAT in NP (data-comp)

sole author

Querying (tamed) ZOIQ?

New 2Exp upper bounds
ZOI and ZOQ are FC

Beyond Regularity?

Undecidability

solo + award
Other relevant statistics about the PhD Candidate

• Dissertation = 6 conference papers (4 A*-ranked papers!) + 3 journal papers

• Best student paper awards at JELIA 2021 and JELIA 2023.

• PI in own prestigious polish research grant 2018–2022 realised with distinction.

• Polish Ministry of Science Award for Outstanding Young Scientists (≈ 45k euro).

• Supervised 8 students resulting in 3 joint publications.

Bartosz Bednarczyk Database-Inspired Reasoning Problems in DLs With Path Expressions 10 / 10

