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e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: + expon., composition, conj. of TG

Our Motivation
e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).
Motivation |: Allowing for expressive navigation features a la RPQs to model graph database scenarios.
Motivation Il: Improve state of the art. Limitation: undecidability of the logics with ~
Motivation |ll: Some positive results are only for the two-variable fragments.

Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

ICPDL = ALC+3(m N ...N 7). :

A =

T - two-way regular expressions

R p
Eg (A1) = 3((ToT)NRY).q @ %
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e Example 1: EI<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.
Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems are undecidable for fluted RGFQ,
already for TBoxes T U {trans(p), p C s U r} for ALC"-TBoxes T and role names r, s, p.
Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.
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We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
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where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types
e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

e J-type over X = maximal satisfiable conjunction of X-literals involving xq, xo. (By)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.

Note: Given ¢ we have |a,| € O(21¥)) but |3, € 0(22“0‘) [reason: arbitrary arity symbols!].

Usually we rephrase satisfiaction of ¢ in terms of realizable types.
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o Vxi\(x1) [the general universal conjunct]

o Vx; 1i(x1) = Ixo Vi(x1x0) A Vi(x1x2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.
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where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.
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o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

@1

From RGF* to ICPDL.
Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
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where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2fo + all binary predicates in ., from .
Translation almost easy, e.g. Vx1 v(x1) — Ixo m(x1%0) A ¢(x1x2) —

P Q
a1 R N R >@ R N9
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where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2fo + all binary predicates in ., from .
Translation almost easy, e.g. Vx; y(x1) = Ixo m(x1x2) A d(x1x2) > [#] (Voé):7 Uq = (T NUgg Bg).T)

(=): Signature enlargement

P Q N
a1 R N R >@ R N9 @
T Ual
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Correctness Proof: The Fusion
e Take models A = pr and A = @gr.

e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).
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O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

e Form a two-dimensional grid €. Each row (column) isomorphic to 2 (B).
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e C is almost a model of ¢, but some elements may miss witnesses for 3"%-conjuncts.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8



)
= on ® ANEEED S SFEEED CEEEEY  EEEEE:
ol ola[a] |40 |k vro ieecalc RO e
D rD D A A . .j Alojo|Oojo & olojojo A Alojo|OojO A
eq. #1-tp > grid-like (EI Al alelo|o
> NPCREE FEFFE CEEEEY | R
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
ALgEER = ¢Fo laloefe(e] [Allololela P PEaaE
|: ()DFO [. . D D A A] I: (;DFO k_|_|__|_|__|_|__|_|__|_|__|_|_1 k Alojojoj A Alojo|Oojoya AOOEEAJ
S888°S =0
Correctness Proof: The Fusion O O O O O
o Take models 2A = and 2 GF-
= = O O 0 0 O
e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).
_ O O O O O
e We next ensure that for each 1-type o in o,
. O O O O O
#a in 2 is equal to #a in ‘5.
O O O O O

e Form a two-dimensional grid €. Each row (column) isomorphic to 2 (B).
e C is almost a model of ¢, but some elements may miss witnesses for 3"%-conjuncts.

e Provide them with a circular-witnessing-scheme & la Gradel & Kolaitis & Vardi.
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