Guarded Fragments Meet Dynamic Logic
The Story of Regular Guards
KR 17.11.25, Melbourne, Austria

Bartosz Jan Bednarczyk bartek@cs.uni.wroc.pl
(Joint work with Emanuel Kieronski)

TECHNISCHE UNIVERSITAT WIEN, AUSTRALIA & UNIWERSYTET WROCLAWSKI, POLAND

TECHNISCHE

UNIVERSITAT
WIEN

Uniwersytet
Wroctawski

eameri

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Proving Useless Complexity Results For Random Logics
KR 17.11.25, Melbourne, Austria

Bartosz Jan Bednarczyk bartek@cs.uni.wroc.pl
(Joint work with Emanuel Kieronski)

TECHNISCHE UNIVERSITAT WIEN, AUSTRALIA & UNIWERSYTET WROCLAWSKI, POLAND

TECHNISCHE

UNIVERSITAT
WIEN

Uniwersytet
WroctawsKki

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM

Y "N . = L | / " !
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]
HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM

Y "N . = L | / _
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM

e

Y "N . = L | / _
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
e Jy (X, y)A\p(X,¥),Vy a(X, y)—p(X, y) — guard must cover free variables of (.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM
p - ‘4 a T N 1 r 1Y

he 'y e W
(i

- ‘\ > £ 3 ‘ |
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
e Jy (X, y)A\p(X,¥),Vy a(X, y)—p(X, y) — guard must cover free variables of (.
p, 0 ==R(X) | 7o | o A@" | Ixpx) | Vxp(x) | Vxa(x) = ¢(x) | Ixa(x) A p(x)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM
p - ‘4 a T N 1 r 1Y

he 'y e W
(i

- ‘\ > £ 3 ‘ |
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
e Jy (X, y)A\p(X,¥),Vy a(X, y)—p(X, y) — guard must cover free variables of (.
o = RE) | ¢ | 9A¢ | Ixpx) | ¥xp(x) | ¥Ra(®) = 9(%) | FKa(®) A p(x)
Example 1. Some artist admires only beekeepers

Ax artst(x) AVy (adm(x,y) — bkpr(y))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM
p - ‘4 a T N 1 r 1Y

- ‘\ > £ 3 ‘ |
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
e Jy a(X, y)A\p(X,y),Vy a(X, ¥)—p(X, y) — guard must cover free variables of .
o = RE) | ¢ | 9A¢ | Ixpx) | ¥xp(x) | ¥Ra(®) = 9(%) | FKa(®) A p(x)
Example 1. Some artist admires only beekeepers
Ax artst(x) AVy (adm(x,y) — bkpry))
Example 2. Every artist envies every beekeeper he admires

Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

The Guarded Fragment GF of First-Order Logic [Andreka et al. 1998]

HAJNAL ANDREKA, ISTVAN NEMETI and JOHAN VAN BENTHEM
p - ‘4 a T N 1 r 1Y

- ‘\ > £ 3 ‘ |
MODAL LANGUAGES AND BOUNDED FRAGMENTS OF
PREDICATE LOGIC

e The guarded fragment of FQO is obtained by relativising quantifiers by atoms.
e Jy a(X, y)A\p(X,y),Vy a(X, ¥)—p(X, y) — guard must cover free variables of .
o = RE) | ¢ | 9A¢ | Ixpx) | ¥xp(x) | ¥Ra(®) = 9(%) | FKa(®) A p(x)
Example 1. Some artist admires only beekeepers
Ax artst(x) AVy (adm(x,y) — bkpry))
Example 2. Every artist envies every beekeeper he admires
Vx artst(x) — Yy [adm(x, y) — (bkpr(y) — env(x, y))]

Coexample 3. Every artist admires every beekeeper

Vx (artst(x) — Yy (bkpr(y) — adm(x,y)))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 1/ 8

Standard Translation From Modal Logics to First-Order Logic

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic

e Recall a translation from modal logic (ALC) to the guarded fragment,
JR. ((p A —q) V VS.I‘)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty(Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF!

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Even worse: the satisfiability problem for GF with transitive relations is undecidable!

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Even worse: the satisfiability problem for GF with transitive relations is undecidable!

Guarded Fragment with Semantically Constrained Guards

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

Standard Translation From Modal Logics to First-Order Logic
e Recall a translation from modal logic (ALC) to the guarded fragment.

IR (b A ~a) V) = o) = Ty (Rlxy) A [(0(y) A =) v ¥2(S(z,y) = 1(2))
@D

e What about other classical modal logics from the modal cube?

Not in GF! It cannot express transitivity /equivalence/Euclidean /etc.

The Two-Variable Guarded Fragment with Transitive Relations

H. Ganzinger, C. Meyer, and M. Veanes @ -{-/-
Maz-Planck-Institut fir Informatik, D-66123 Saarbricken, Germany N

Even worse: the satisfiability problem for GF with transitive relations is undecidable!
Guarded Fragment with Semantically Constrained Guards

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG

CFTIv

- Ay -

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 2/ 8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG

* f“,‘..!‘ ‘2‘ S

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG

.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG

.

Our Motivation

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon

- W

Our Motivation

e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG
x S T :

e

- A -

Our Motivation

e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

R— : OT
ICPDL = ALC+3(m N ...N 7).

o — D4R .
7 - two-way regular expressions ' q S
T
Eg (A1) E3((ToT)NR")q \@HT%
q q

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG
x S T :

e

- A -

Our Motivation
e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).

Motivation |: Allowing for expressive navigation features a la RPQs to model graph database scenarios.

R— : OT
ICPDL = ALC+3(m N ...N 7).

o — D4R .
7 - two-way regular expressions ' q S
T
Eg (A1) E3((ToT)NR")q \@HT%
q q

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG
x S T :

e

- A -

Our Motivation
e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).
Motivation |: Allowing for expressive navigation features a la RPQs to model graph database scenarios.

Motivation Il: Improve state of the art. Limitation: undecidability of the logics with ~.

R— : OT
ICPDL = ALC+3(m N ...N 7).

o — D4R .
7 - two-way regular expressions ' q S
T
Eg (A1) E3((ToT)NR")q \@HT%
q q

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: &~ + expon., composition, conj. of TG
x S T :

e

- A -

Our Motivation
e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).
Motivation |: Allowing for expressive navigation features a la RPQs to model graph database scenarios.
Motivation Il: Improve state of the art. Limitation: undecidability of the logics with ~.

Motivation |ll: Some positive results are only for the two-variable fragments.

R— : OT
ICPDL = ALC+3(m N ...N 7).

o — D4R .
7 - two-way regular expressions ' q S
T
Eg (A1) E3((ToT)NR")q \@HT%
q q

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

e Ganzinger et al. initiated the study of GF where distinguished relations may appear only as guards.
Dec. cases: transitive, equivalence (closure) guards Undec. cases: + expon., composition, conj. of TG

Our Motivation
e Goal: Provide an extension of GF that captures dynamic logic (ICPDL).
Motivation |: Allowing for expressive navigation features a la RPQs to model graph database scenarios.
Motivation Il: Improve state of the art. Limitation: undecidability of the logics with ~
Motivation |ll: Some positive results are only for the two-variable fragments.

Motivation IV: Provide a more high-level proof capturing many variants of GF in a uniform way.

ICPDL = ALC+3(m N ...N 7). :

A =

T - two-way regular expressions

R p
Eg (A1) = 3((ToT)NRY).q @ %

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 3/8

Guarded Fragment with Regular Guards (RGF)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over > o by

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]

e Captures transitivity of via R,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]

e Captures transitivity of via R, equivalence relations via (R + R)*,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]

e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.
RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.
RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.
e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.
RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.
e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.

Proof idea:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.
e Built-in support for regular path queries.
e Due to the presence of N we generalize GF with conjunction of transitive guards.
Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems are undecidable for fluted RGFQ,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Guarded Fragment with Regular Guards (RGF)
Consider disjoint vocabularies > ro and X (e,.
RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.
e Example 1: E|<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)
e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.
e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.
Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems are undecidable for fluted RGFQ,
already for TBoxes T U {trans(p),p C s U r} for ALC"-TBoxes 7 and role names r, s, p.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 4/ 8

Guarded Fragment with Regular Guards (RGF)

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

e Example 1: EI<(T oT)N R*).q translates to dy ((T oT)N R*) (xy) Adaly)

e Example 2: All R-reachable elements are B-connected: Vxy R*(xy) — B(xy) [not in uGF]
e Captures transitivity of via RT, equivalence relations via (R + R)*, composition and more.

e Built-in support for regular path queries.

e Due to the presence of N we generalize GF with conjunction of transitive guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.
Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems are undecidable for fluted RGFQ,
already for TBoxes T U {trans(p), p C s U r} for ALC"-TBoxes T and role names r, s, p.
Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

4/ 8

Technical Toolkit (for the two-variable case)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:
o Vxi\(x1)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)
We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)
We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:
o Vxi\(x1) [the general universal conjunct]

o Vx17i(x1) = Ixx Vi(x1x2) A Yi(x1x2)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)
We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:
o Vxi\(x1) [the general universal conjunct]

o Vxq ?7,'(X1) — dxo 19,'(X1X2) N\ ¢i(X1X2) [ElFO-conjuncts]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)
We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:
o Vxi\(x1) [the general universal conjunct]
o Vx1ni(x1) = I Vi(x1x0) A Yi(x1x0) [370-conjuncts]

o Vx1Vxo ni(x1x2) — Yi(x1x2)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx1ni(x1) = I Vi(x1x0) A Yi(x1x0) [370-conjuncts]
o Vx1Vxo ?7,'(X1X2) — ¢/(X1X2) [VFO—conjuncts]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx1ni(x1) = I Vi(x1x0) A Yi(x1x0) [370-conjuncts]
o Vx1Vxo ?7,'(X1X2) — ¢/(X1X2) [VFO—conjuncts]

o Vxivi(x1) = Ixo mi(x1x2) A @i(x1x2)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]

° VXl\V/XQ 7T,'(X1X2) — ¢i(X1X2)7

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx1mi(x1) = Ixx Ji(x1x2) A Yi(x1%0) [37-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx1mi(x1) = Ixx Ji(x1x2) A Yi(x1%0) [37-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7r; are RPQ with N,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx1mi(x1) = Ixx Ji(x1x2) A Yi(x1%0) [37-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types

e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types
e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

e J-type over X = maximal satisfiable conjunction of X-literals involving xq, xo. (By)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types
e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

e J-type over X = maximal satisfiable conjunction of X-literals involving xq, xo. (By)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types
e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

e J-type over X = maximal satisfiable conjunction of X-literals involving xq, xo. (By)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.

Note: Given ¢ we have |a,| € O(21¥)) but |3, € 0(22“9‘) [reason: arbitrary arity symbols!].

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 5/ 8

Technical Toolkit (for the two-variable case)

We say that ¢ € RGF? is in Scott’s normal form if it is a conjunction of:

o Vxi\(x1) [the general universal conjunct]
o Vx17i(x1) = I Vi(xix) A Yi(x1x2) [370-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO-conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"&-conjuncts]
o Vx1Vxo mi(x1x2) = di(x1x0), [V"e-conjuncts]

where all 7; are RPQ with N, and all other formulae are quantifier-free and over Y rg.

Atomic One-Types and Two-Types
e |-type over X = maximal satisfiable conjunction of X-literals involving x;. (ax)

e J-type over X = maximal satisfiable conjunction of X-literals involving xq, xo. (By)

Intuition: 1-types are colours of elements, and 2-types are colours of edges.

Note: Given ¢ we have |a,| € O(21¥)) but |3, € 0(22“0‘) [reason: arbitrary arity symbols!].

Usually we rephrase satisfiaction of ¢ in terms of realizable types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic

5/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx; 1i(x1) = Ixo Vi(x1x0) A Vi(x1x2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx; 1i(x1) = Ixo Vi(x1x0) A Vi(x1x2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx; 1i(x1) = Ixo Vi(x1x0) A Vi(x1x2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF* to ICPDL.
Take . If satisfiable, ¢ has a model realizing at most exponentially many 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

@1

From RGF* to ICPDL.
Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:

Q
R N R >® R N9

T

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

@1

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

Q
R N R >® R N9

T

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

@1

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2o

Q
R N R >@ R N9

T

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [37O-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

@1

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2fo + all binary predicates in ., from .

Q
R N R >@ R N9

T

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [37O-conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2fo + all binary predicates in ., from .
Translation almost easy, e.g. Vx1 v(x1) — Ixo m(x1%0) A ¢(x1x2) —

P Q
a1 R N R >@ R N9

T

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

o Vxi\(x1) [the general universal conjunct]

o Vx1mi(x1) = Ixo Vi(x1x2) A i(x1%2) [EIFO—conjuncts]
o Vx1Vxo ni(x1x0) — wi(x1x0) [VFO—conjuncts]
o Vx17i(x1) — I mi(x1x2) A di(x1x2) [3"8-conjuncts]
o Vx1Vxo mi(x1x2) — di(x1x0), [V"&-conjuncts]

where all 7r; are RPQ with M, and all other formulae are quantifier-free and over X rg.

From RGF? to ICPDL.

Take . If satisfiable, v has a model realizing at most exponentially many 2-types. Our vocabulary contains:
1. Fresh unary U, per each 1-type o from cx,.

2. Fresh binary I3, per each 2-type 3 from 3, restricted to 2fo + all binary predicates in ., from .
Translation almost easy, e.g. Vx; y(x1) = Ixo m(x1x2) A d(x1x2) > [#] (Voé):7 Uq = (T NUgg Bg).T)

(=): Signature enlargement

P Q N
a1 R N R >@ R N9 @
T Ual

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 6/ 8

From the Two-Variable Case to the General Case (Many details omitted)

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:

e ¢ contains all 37 and V" conjuncts of .

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:
e cr contains all 379 and V"© conjuncts of .

e 1 contains all 9% and V" conjuncts of ¢ and the two-variable versions of 30 and VO conjuncts.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:
e cr contains all 379 and V"© conjuncts of .
e 1 contains all 9% and V" conjuncts of ¢ and the two-variable versions of 30 and VO conjuncts.

e Synchronization: require that models of r and @gp realize the same sets of 1-types and 2-types.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:
e cr contains all 379 and V"© conjuncts of .
e 1 contains all 9% and V" conjuncts of ¢ and the two-variable versions of 30 and VO conjuncts.
e Synchronization: require that models of r and @gp realize the same sets of 1-types and 2-types.

Step Ill: Test both ¢ and @gf for satisfiability (this gives the right upper bound). Viola!

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

From the Two-Variable Case to the General Case (Many details omitted)
Step I: Transform your input ¢ in RGF to Scott's normal form.
Step II: Construct % in RGF? and ©cr in GF as follows:
e cr contains all 379 and V"© conjuncts of .
e 1 contains all 9% and V" conjuncts of ¢ and the two-variable versions of 30 and VO conjuncts.
e Synchronization: require that models of r and @gp realize the same sets of 1-types and 2-types.

Step Ill: Test both ¢ and @gf for satisfiability (this gives the right upper bound). Viola!

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

djojo|ojoj« dlojo|ojoj« h
Hﬂoonn CIRICAE LY
o|]|<]]olo |0 gj<jdjojo o
plo]<]|<]o]o olol<]d[o [o
olgloidjdjo oln[o[¥[<]o
olo|0[0]9]T olo [O0]0O]d[d

< < <lo
%wmun riww“m Y@.
oR[<[ojo (O O [ololDO L
plo]< MW nlol< MM
Mwmna_m_ M.anAA
dJo]o|cla]«] [{JoTo Jnln]«
CISICI I [CIRIG LY
O|<ofo]o CIRIEICICH[]
olol<|<]o o nlold1<]o [o
ololol<d]d]o olglojdidio
olo]o]ojd]d olo[O]O]qd]<

/

2 = o 9
S S SHEENE
AL L A

7 Y D
ol CACHI=R=RE0 %
<4< (e [e O [O|=¢r
Old[<d[e e [O[F ¢x
o(O[9d]d]0 @ |Fyx
elo|O|g(dq]|eo = or
‘\f‘LFDL(D\fA\FAL_”ﬁS

Q
=
9
=

=T)]

(@

@ | F vr

00 AA|

F o

II eq. #1-tp

[QQDDAA]IWFO

|= PFO

Correctness Proof: The Fusion

7/ 8

Guarded Fragments Meet Dynamic Logic

Bartosz “Bart” Bednarczyk

djojo|ojoj« dlojo|ojoj« h
Hﬂoonn CIRICAE LY
o|]|<]]olo |0 gj<jdjojo o
plo]<]|<]o]o olol<]d[o [o
olgloidjdjo oln[o[¥[<]o
olo|0[0]9]T olo [O0]0O]d[d

< < <lo
%wmun riww“m Y@.
oR[<[ojo (O O [ololDO L
plo]< MW nlol< MM
Mwmna_m_ M.anAA
dJo]o|cla]«] [{JoTo Jnln]«
CISICI I [CIRIG LY
O|<ofo]o CIRIEICICH[]
olol<|<]o o nlold1<]o [o
ololol<d]d]o olglojdidio
olo]o]ojd]d olo[O]O]qd]<

/

2 = o 9
S S SHEENE
AL L A

7 Y D
ol CACHI=R=RE0 %
<4< (e [e O [O|=¢r
Old[<d[e e [O[F ¢x
o(O[9d]d]0 @ |Fyx
elo|O|g(dq]|eo = or
‘\f‘LFDL(D\fA\FAL_”ﬁS

Q
=
9
=

=T)]

(@

@ | F vr

00 AA|

F o

II eq. #1-tp

[QQDDAA]IWFO

|= PFO

Correctness Proof: The Fusion

e Take models A = pr and A = war.

7/ 8

Guarded Fragments Meet Dynamic Logic

Bartosz “Bart” Bednarczyk

)
|=Q0m . Q .||:| O A A IZ(PFO olop[ojala oonlnlﬂA AAAERN
@ | F ¢x ; carrcalcatrca D PEES
@O|O| A AO® |= YPFO olalalolo[a | [ofalalofo[o I:IIAAOOI:I
D p- < AlAlojo[O[t1] | alAlofo]Ojo NREEELE
D I:I D A A . . Alolo|ojoj & olojojola Alojojolga
eq. #1-tp > grid-like ‘ol al alelelo
> NNEEEE SEEFEE GREEES | CEEEER
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
Aleje|O)O] A = pro Alalofolele] (2laelelam FrECaD
IZ()DFO [. . D I:l A A] IZ(;DFO —ﬂ_—ﬂ_—ﬂ_—ﬂ_—ﬂ_T . Alolo|ojda] [aAlo]o|ojola AoonnAJ
AR SRS IR SR SIS Y
[/ R RR ':(p

Correctness Proof: The Fusion
e Take models A = pr and A = @gr.

e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

)
|=Q0m . Q .||:| O A A IZ(PFO olop[ojala oonlnlﬂA AAAERN
@ | F ¢x ; carrcalcatrca D PEES
@O|O| A AO® |= YPFO olalalolo[a | [ofalalofo[o I:IIAAOOI:I
D p- < AlAlojo[O[t1] | alAlofo]Ojo NREEELE
D I:I D A A . . Alolo|ojoj & olojojola Alojojolga
eq. #1-tp > grid-like ‘ol al alelelo
> NNEEEE SEEFEE GREEES | CEEEER
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
Aleje|O)O] A = pro Alalofolele] (2laelelam FrECaD
IZ()DFO [. . D I:l A A] IZ(;DFO —ﬂ_—ﬂ_—ﬂ_—ﬂ_—ﬂ_T . Alolo|ojda] [aAlo]o|ojola AoonnAJ
AR SRS IR SR SIS Y
[/ R RR ':(p

Correctness Proof: The Fusion
e Take models A = pr and A = @gr.

e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).

e We next ensure that for each 1-type o in o,

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

)
|=Q0m . Q .||:| O A A IZ(PFO olop[ojala oonlnlﬂA AAAERN
@ | F ¢x ; carrcalcatrca D PEES
@O|O| A AO® |= YPFO olalalolo[a | [ofalalofo[o I:IIAAOOI:I
D p- < AlAlojo[O[t1] | alAlofo]Ojo NREEELE
D I:I D A A . . Alolo|ojoj & olojojola Alojojolga
eq. #1-tp > grid-like ‘ol al alelelo
> NNEEEE SEEFEE GREEES | CEEEER
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
Aleje|O)O] A = pro Alalofolele] (2laelelam FrECaD
IZ()DFO [. . D I:l A A] IZ(;DFO —ﬂ_—ﬂ_—ﬂ_—ﬂ_—ﬂ_T . Alolo|ojda] [aAlo]o|ojola AoonnAJ
AR SRS IR SR SIS Y~
[/ R RR ':(p

Correctness Proof: The Fusion
e Take models A = pr and A = @gr.

e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).

e We next ensure that for each 1-type o in o,

#a in 2 is equal to #a in ‘5.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

)
IZQO(R @) (0] .||:| O] Al A IZQDFO ol B[o[ala oonlnlﬂA AAAEEE
@ | F ¢r ; g carrcalcatrca D PEES
QO (O] A A © |= YPFO o[a[a[olo[m | @ ololo I:IIAAOOI:I
D - <4 PEEEEE ngonn NREEEE
D I:l D A A . . Alofo|ojoj 4 | BREEN Alojojolga
eq. #1-tp > grid-like ‘ol al alelelo
> CEEEEE R CERFEY . FEREE
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
Aleje|O)O] A = pro rreocoleccosy FrECaD
IZ()DFO [. . D I:l A A] IZ(;DFO ‘_I_l__l_l__”__”__”__”_i . Alojo|ojo{a] [alo]o|ojoja AoonnAJ
€ 6
SSFSESS =0

Correctness Proof: The Fusion
e Take models A = pr and A = @gr.

e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).

e We next ensure that for each 1-type o in o,

#a in 2 is equal to #a in ‘5.

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

e Form a two-dimensional grid €. Each row (column) isomorphic to 2 (B).

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

)
= on ® ANEEED S SFEEED CEEEEY EEEEE:
ol ola[a] |40 |k vro ieecalc RO e
D (D D A A . .j Alojo|Oojo & olojojo A Alojo|OojO A
eq. #1-tp > grid-like (EI Al alelo|o
> NPCREE FEFFE CEEEEY | R
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
ALgEER = ¢Fo Atalololla] [AaooRE P PEaaE
|: ()DFO [. . D D A A] I: (;DFO L_|_|__|_|__|_|__|_|__|_|__|_|_J k Alojojoj A Alojo|Oojoya AOOEEAJ
S888°S =0
Correctness Proof: The Fusion O O O O O
o Take models 2A = and 2 GF-
= = O O 0 0 O
e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).
_ O O O O O
e We next ensure that for each 1-type o in o,
. . . O O O O O
#a in 2 is equal to #a in ‘5.
O O O O O

e Form a two-dimensional grid €. Each row (column) isomorphic to 2 (B).

e C is almost a model of ¢, but some elements may miss witnesses for 3"%-conjuncts.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

)
= on ® ANEEED S SFEEED CEEEEY EEEEE:
ol ola[a] |40 |k vro ieecalc RO e
D rD D A A . .j Alojo|Oojo & olojojo A Alojo|OojO A
eq. #1-tp > grid-like (EI Al alelo|o
> NPCREE FEFFE CEEEEY | R
N—— - ojaj Al Alo]o | | ojo|al Alo|o ajo o|o
ALgEER = ¢Fo laloefe(e] [Allololela P PEaaE
|: ()DFO [. . D D A A] I: (;DFO k_|_|__|_|__|_|__|_|__|_|__|_|_1 k Alojojoj A Alojo|Oojoya AOOEEAJ
S888°S =0
Correctness Proof: The Fusion O O O O O
o Take models 2A = and 2 GF-
= = O O 0 0 O
e Equilize their domains by Léwenheim Skolem (w.l.0.g. to Np).
_ O O O O O
e We next ensure that for each 1-type o in o,
. O O O O O
#a in 2 is equal to #a in ‘5.
O O O O O

e Form a two-dimensional grid €. Each row (column) isomorphic to 2 (B).
e C is almost a model of ¢, but some elements may miss witnesses for 3"%-conjuncts.

e Provide them with a circular-witnessing-scheme & la Gradel & Kolaitis & Vardi.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 7/ 8

Conclusions

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions

Consider disjoint vocabularies > ro and X (e,.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over > o by

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.

Proof idea:

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions

Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)

Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.

Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.

Theorem (KR 2025)
1 EXPSPACE-complete sublogic of RGF[-*, -*].

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies > ro and X (e,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)

Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.
Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.

Theorem (KR 2025)
1 EXPSPACE-complete sublogic of RGF[-*, -*].

Combines ideas from the fluted fragment and 1-way guards.

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

Conclusions
Consider disjoint vocabularies 2ro and 2 re,.

RGF is the least extension of GF over Yo by allowing ICPDL programs m(xy) over ¥, as binary guards.

Theorem (KR 2025)
The satisfiability problem for RGF is 2EXPTIME-complete.
Proof idea: solve RGF? via a reduction to ICPDL and lift it to the full RGF via a fusion.

Theorem (KR 2025)
Finite&Unrestricted Conjunctive Query Entailment Problems is undecidable for a tiny fragment of RGF.
Significantly improves prior results by Gottlob&Pieris& Tendera from ICALP 2013.

Theorem (KR 2025)
3 EXPSPACE-complete sublogic of RGF[- ", -*] I
Combines ideas from the fluted fragment and 1-way guards.

FINITE GRAPH OPERATING
AUTOMATA

Bartosz “Bart” Bednarczyk Guarded Fragments Meet Dynamic Logic 8/ 8

